Semantic Indexes for Machine Learning-based Queries over Unstructured Data
Daniel Kang*, John Guibas*, Peter Bailis, Tatsunori Hashimoto, Matei Zaharia
SIGMOD 2022 (to appear)
Finding Label and Model Errors in Perception Data With Learned Observation Assertions
Daniel Kang, Nikos Arechiga, Sudeep Pillai, Peter Bailis, Matei Zaharia
SIGMOD 2022 (to appear), AIDB (VLDB workshop) 2021, NeurIPS DCAI workshop 2021
VIVA: An End-to-End System for Interactive Video Analytics
Daniel Kang*, Francisco Romero*, Peter Bailis, Christos Kozyrakis, Matei Zaharia
CIDR 2022
Exploiting Proximity Search and Easy Examples to Select Rare Events
Daniel Kang, Alex Derhacobian, Kaoru Tsuji, Trevor Hebert, Peter Bailis, Tadashi Fukami, Tatsunori Hashimoto, Yi Sun, Matei Zaharia
NeurIPS DCAI workshop 2021
Accelerating Approximate Aggregation Queries with Expensive Predicates
Daniel Kang*, John Guibas*, Peter Bailis, Tatsunori Hashimoto, Yi Sun, Matei Zaharia
VLDB 2021 (extended technical report)
Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics
Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, Matei Zaharia
VLDB 2021
  Approximate Selection with Guarantees using Proxies
 
Daniel Kang*, Edward Gan*, Peter Bailis, Tatsunori Hashimoto, Matei Zaharia 
VLDB 2020
A Demonstration of Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference
Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, Matei Zaharia
VLDB 2020 demo
  Improved Natural Language Generation via Loss Truncation
 
Daniel Kang, Tatsunori Hashimoto 
ACL 2020
  Model Assertions for Improving and Monitoring ML Models
 
Daniel Kang*, Deepti Raghavan*, Peter Bailis, Matei Zaharia 
MLSys 2020
  Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference
 
Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, Matei Zaharia 
MLSys 2020
  MLPerf Training Benchmark
 
MLSys 2020
  BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics
 
Daniel Kang, Peter Bailis, Matei Zaharia 
VLDB 2020
  Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman*, Daniel Kang*, Deepak Narayanan*,
Luigi Nardi, Tian Zhao, Jian Zhang,
Peter Bailis, Kunle Olukotun, Chris Ré, Matei Zaharia 
ACM SIGOPS OSR 2019
  LIT: Learned Intermediate Representation Training for Model Compression
Animesh Koratana*, Daniel Kang*, Peter Bailis, Matei Zaharia 
ICML 2019
  Challenges and Opportunities in DNN-Based Video Analytics: A Demo of the BlazeIt Video Query Engine
Daniel Kang, Peter Bailis, Matei Zaharia 
CIDR 2019
  Model Assertions for Debugging Machine Learning
Daniel Kang*, Deepti Raghavan*, Peter Bailis, Matei Zaharia 
NeurIPS MLSys Workshop 2018, Contributed Talk 
ICLR DebugML Workshop 2019, Best student research paper, Contributed talk
  Analysis of the Time-To-Accuracy Metric and Entries in the DAWNBench Deep Learning Benchmark
 
Cody Coleman*, Deepak Narayanan*, Daniel Kang*, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis,
Kunle Olukotun, Chris Ré, and Matei Zaharia 
NeurIPS MLSys Workshop 2018
  Block-wise Intermediate Representation Training for Model Compression
 
Animesh Koratana*, Daniel Kang*, Peter Bailis, Matei Zaharia 
NeurIPS CDNNRIA Workshop 2018
  BlazeIt: An Optimizing Query Engine for Video at Scale
Daniel Kang, Peter Bailis, Matei Zaharia 
SysML 2018
  NoScope: Optimizing Neural Network Queries over Video at Scale
 
Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, Matei Zaharia 
PVLDB 2017
  DAWNBench: An End-to-End Deep Learning Benchmark and Competition
 
Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis,
Kunle Olukotun, Chris Ré, and Matei Zaharia 
NIPS ML Systems Workshop 2017, Contributed Talk
  A synergistic DNA logic predicts genome-wide chromatin accessibility
 
Tatsunori Hashimoto*, Richard I. Sherwood*, Daniel Kang*,
Nisha Rajagopal, Amira Barkal, Haoyang Zeng, Bart Emons, Sharanya Srinivasan,
Tommi Jaakkola, David Gifford 
Genome Research (2016)
  GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding
 
Haoyang Zeng, Tatsunori Hashimoto, Daniel Kang, David Gifford 
Bioinformatics (2016)
  Non-trapping surfaces of revolution with long-living resonances
 
Kiril Datchev, Daniel Kang, Andre Kessler 
Mathematical Research Letters (2015)