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ABSTRACT

ML is being deployed in complex, real-world scenarios where errors
have impactful consequences. In these systems, thorough testing
of the ML pipelines is critical. A key component in ML deployment
pipelines is the curation of labeled training data. Common practice
in the ML literature assumes that labels are the ground truth. How-
ever, in our experience in a large autonomous vehicle development
center, we have found that vendors can often provide erroneous
labels, which can lead to downstream safety risks in trained models.

To address these issues, we propose a new abstraction, learned
observation assertions, and implement it in a system called Fixy.
Fixy leverages existing organizational resources, such as existing
(possibly noisy) labeled datasets or previously trained ML models,
to learn a probabilistic model for finding errors in human- or model-
generated labels. Given user-provided features and these existing
resources, Fixy learns feature distributions that specify likely and
unlikely values (e.g., that a speed of 30mph is likely but 300mph is
unlikely). It then uses these feature distributions to score labels for
potential errors.We show that Fixy can automatically rank potential
errors in real datasets with up to 2× higher precision compared
to recent work on model assertions and standard techniques such
as uncertainty sampling. Furthermore, LOA can uncover labeling
errors in 70% of scenes in a popular autonomous vehicle dataset.
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1 INTRODUCTION

Machine learning (ML) is increasingly being deployed in complex
applicationswith real-world consequences. For example,MLmodels
are being deployed to make predictions over perception data in
autonomous vehicles (AVs) [12], with potentially fatal consequences
for errors, such as striking pedestrians [29]. Thus, quality assurance
and testing of ML pipelines are of paramount concern [1, 18, 31, 32].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Example of human labels (orange) and missing la-

bels (red) in the Lyft Perception dataset. The black truck

highlighted is within 25m of the AV. Such errors can cause

downstream issues with perception and planning systems.

A critical component of ML deployments is the curation of high-
quality training data, in which crowd workers produce labels over
data. Similar to how errors in tabular data results in downstream
errors in query results, erroneous training data (e.g., Figure 1) can
lead to subsequent safety repercussions for trained models. As such,
finding these errors is critical, which we focus on in this work.

Unfortunately, standard techniques in data cleaning are not well
suited for finding errors in training data. For example, while con-
straints workwell on tabular data, they are less suited for perception
data, e.g., pixels of an image. As such, we have found it necessary
to develop new tools for finding errors in training data.

Recent work has proposed Model Assertions (MAs) that indicate
when errors in ML model predictions or labels may be occurring
[11]. MAs are black-box functions over model inputs and outputs
that return a quantitative severity score indicating when an ML
model or human-proposed label may have an error. For example, a
MA may assert that a prediction of a box of a car should not appear
and disappear in subsequent frames of a video. MAs can be used
to monitor the ML models in deployment, and to flag problematic
data to label and retrain the model.

However, in our experience deploying MAs in a real-world AV
perception training pipeline, we have found several major chal-
lenges. First, users must manually specify MAs, which can be chal-
lenging for complex ML deployments. Second, calibrating severity
scores so that higher severity scores indicate a higher chance of
error is challenging. This is especially important as organizations
have limited resources to evaluate potential errors in ML models or
human labels. Third, ad-hoc methods of specifying severity scores
ignores organizational resources [28] that are already present: large
amounts of ground-truth labels and existing ML models.

To address these challenges, we propose a probabilistic domain-
specific language (DSL), Learned Observation Assertions (LOA), for
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specifying assertions, and methods for data-driven specification of
severity scores that leverage existing resources in ML deployments.
We implement LOA in a prototype system (Fixy), embedded in
Python to easily integrate with ML systems.

Our first contribution, LOA, allows users to specify properties of
interest for perception tasks. LOA contains three components: data
associations, feature distributions, and application objective func-
tions. LOA can be used to specify assertions without ad-hoc code
or severity scores by automatically transforming the specification
into a probabilistic graphical model and scoring data components,
producing statistically grounded severity scores.

In our labeling deployment, sensor data across short snippets of
time (scenes) are sent to vendors for labeling. These scenes are then
audited for missing labels. These errors are difficult to specify via
ad-hoc MAs, so our DSL supports means of associating observa-
tions together: across observation sources (observation bundles, i.e.,
predictions from different ML models or sensors) and across time
(tracks, i.e., predictions of the same object over time). These associ-
ated observations can then be considered jointly when searching
for errors.

Our second contribution is methods of leveraging organizational
resources [28], i.e., existing labels and ML models, to automatically
specify severity scores via LOA. Users specify features over data,
which are used to automatically generate feature distributions, and
application objective functions (AOFs) to guide the search for er-
rors. Feature distributions take sets of observations and output a
probability of seeing a feature of the input. For example, a feature
distribution might take a 3D bounding box of a car and return the
likelihood of encountering that box volume. AOFs transform fea-
ture distribution values for the application at hand. For example, if
we wish to find likely tracks (e.g., a track missed by human labels),
the AOF could simply return the feature distributions’ value. If we
wish to find unlikely tracks (e.g., a “ghost” track that an ML model
erroneously predicts), the AOF could return one minus the feature
distributions’ value.

We evaluate Fixy on two real-world AV datasets, the publicly
available Lyft Level 5 perception dataset [13] as well as an internally
collected dataset. Both datasets were annotated by leading commer-
cial labeling vendors. Despite best efforts from these vendors [6],
we find a number of labeling errors via Fixy, some of which could
cause safety violations (e.g., in Figures 1 and 8). We first show that
Fixy can achieve recalls of up to 75% when searching for errors in
these datasets, while achieving 2× higher precision for finding label
error than hand-crafted MAs. Furthermore, Fixy can find novel
errors in ML models that the hand-crafted MAs in previous work
are unable to find, and finds high-confidence errors that uncertainty
sampling misses.

In summary, our contributions are
(1) LOA, a probabilistic DSL with syntax and semantics for validat-

ing observations over complex perception data.
(2) Methods for leveraging organizational resources (in the form

of existing ML models and labels) to automatically tune feature
distributions and detect errors.

(3) An empirical evaluation of our implementation Fixy, show-
ing it can outperform baselines for detecting errors even in
commercially generated and vetted label data.

2 EXAMPLE AND BACKGROUND

ML workflow. As an example, we describe the ML deployment
pipeline for our AVs, focusing on labeling data for perception sys-
tems. Other organizations deploy similar pipelines, e.g., as docu-
mented by Kaparthy [12].

Our AV deployment pipeline is a continuous process, in which
ML models are trained, tested, and deployed on vehicles. Because
MLmodels are continuously exposed to new and different scenarios,
we continuously collect and label data, which is subsequently used
to develop and retrain ML models [2].

Label quality is of paramount concern: erroneous labels can lead
to downstream errors, which in turn can lead to safety violations.
Vendors that provide labels are not always accurate, which is in
contrast to the large body of work that assumes datasets are “gold.”
For our perception system, the most egregious errors are when
objects are entirelymissed in labeling.We show examples ofmissing
labels in Figure 1, in which a truck and several cars were missed by
the human labeler.

To address label quality issues, our organization has expert au-
ditors who audit the vendor-provided labels. Unfortunately, it is
too expensive to audit every data point, so we have developed Fixy,
which enables ranking datapoints that are likely to be erroneous
and allows better utilization of auditing resources.
Model assertions. MAs are user-provided, black box functions
over MLmodel inputs and outputs that indicate if the MLmodel has
an error [11]. MAs can be deployed at test time to indicate possible
errors so corrective actions can be taken. They can additionally be
used to select data that produces errors for labeling, e.g., as studied
by Kang et al. [11], as many organizations continuously collect data
to label.

Unfortunately, MAs are specified in an ad-hoc manner. They
require users to write programs to specify exactly what forms of
errors occur and ad-hoc severity scores to indicate the likelihood
of an error. We have found that these ad-hoc procedures can be
challenging to use.
Factor graphs. Fixy generates graphical models from data and
feature distributions. We specifically consider factor graphs due to
the ease of representing data and distributions [15].

Given a set of random variables𝑋 = {𝑋1, . . . , 𝑋𝑛}, a factor graph
represents a factorization of a joint distribution 𝑔(𝑋1, . . . , 𝑋𝑛). As-
sume that the joint distribution can be factorized in terms of a set
of functions 𝑓𝑗 , which we will call factors, and 𝑆 𝑗 ⊆ 𝑋

𝑔(𝑋1, ..., 𝑋𝑛) =
𝑚∏
𝑗=1

𝑓𝑗 (𝑆 𝑗 ) . (1)

Formally, we can represent a factor graph as a graph𝐺 = (𝑋, 𝐹, 𝐸),
where 𝑋 and 𝐹 are two disjoint sets of nodes. The graph is bipartite,
meaning that each edge connects a node in 𝑋 to a node in 𝐹 , but no
edge connects nodes in 𝑋 among themselves nor nodes in 𝐹 among
themselves. For every factor 𝑓𝑗 ∈ 𝐹 , there is an edge that connects
it to 𝑋𝑖 if and only if 𝑋𝑖 ∈ 𝑆 𝑗 in the factorization of 𝑔.

We consider specific factor graphs that are automatically gener-
ated by Fixy, as described later in this paper.
LIDAR. We extensively use and show LIDAR data and predictions
over LIDAR data as examples of missing human labels or ML model
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(a) Schematic of a track that contains observations from LIDAR ML model predictions and from human-proposed labels. We show examples

of feature distributions for observations (𝑝1, 𝑝2, 𝑝4, and 𝑝5), bundles (𝑏3), and transitions (𝑝1,2).

(b) 𝑡 = 1 (𝑣1 model and 𝑣1 human) (c) 𝑡 = 2 (𝑣2 model and 𝑣2 human) (d) 𝑡 = 3 (𝑣3 model and 𝑣3 human) (e) 𝑡 = 4 (𝑣4 model and 𝑣4 human)

Figure 2: Example of the factor graph (top) and corresponding LIDAR point cloud data (bottom).We show here and throughout

the birds eye view of the LIDAR frame. Concentric circles represent equidistance from the sensor. Reflected points fromobjects

are shown as dots. The track is in black and other human-proposed labels are in orange for reference.

predictions. LIDAR is generated by pulsing light and timing the
returns of the pulsed light [30]. With accurate timings, LIDAR
data gives accurate distance measurements and are represented as
point clouds. In this paper, we show birds-eye view of LIDAR data:
concentric circles indicate same distances from the LIDAR sensor
and we draw predicted boxes over the scenes. We show an example
in Figure 2. LIDAR figures in white background are from the Lyft
Level 5 perception dataset [13] and figures in black background are
from our internal dataset.

3 SYSTEM OVERVIEW

Goals. Fixy aims to enable users to find errors in ML labeling
pipelines and in ML models, primarily in the form of missing labels.
In particular, Fixy aims to reduce manual effort by only requiring
users to specify natural quantities (e.g., box volume, velocity) as
opposed to specifying the exact form of errors as model assertions
expect users to do.
Inputs and outputs. We first denote human-proposed labels and
ML model outputs as “observations.” As input, Fixy takes a set of
observations. As output, Fixy returns a ranked list of (potentially
a subset of) observations, where higher ranked observations are
ideally more likely to contain errors.

Offline, Fixy takes already-present labels to learn feature distri-
butions over features of the observations. Fixy will then use this
data to rank potential errors.
Fixy components. Fixy consists of: a DSL for specifying relations
between observations and feature distributions, a component to
learn feature distributions, a scoring component, and a runtime
engine. Fixy’s DSL allows users to specify how feature distributions

Features, AOFs
(e.g., velocity)

Associations
(e.g., IOU)

Fixy

Feature distribution 
learning

Historical 
data

Graphical model 
generation Scoring

Ranked outputs

New data

Figure 3: System diagram for Fixy. Users provide features

over perception data (e.g., box volume) and associations

between observations. Given these inputs, Fixy will learn

feature distributions, generate graphical models, score new

data, and output potential errors.

and observations interact. Its distribution learning component fits
distributions over existing observations. Its scoring component
scores observations or groups of observations by likelihood. Finally,
its runtime engine ranks observations or groups of observations.

We show a system diagram in Figure 3. Users need only provide
the features (and data to be ranked). Once the feature distributions
are learned, Fixy will rank potential errors for auditing.
Workflow. Fixy contains an offline (distribution learning) and
online (error ranking) phase. In the offline phase, Fixy will take
existing organizational resources in the form of existing labels
to learn feature distributions. In the online phase, Fixy will rank
potential errors.

We have found that users of label checking tools are often non-
experts in coding and ML tools, so we have opted for simplicity in
LOA. Thus, a user of Fixy need only specify features and optionally
AOFs. In particular, many features are already computed for use in
other pipelines so can be reused (e.g., object volume, velocity, and
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distance from vehicle). Thus, the features can be specified in few
lines of code, as we show below.
Worked example. Consider the use case of findingmissing human
labels of 3D bounding boxes over LIDAR point cloud data. For
example, Figure 1 show several missing cars and a missing truck.

In this example, we have two sources of observations: predictions
from an ML model and human labels. To find these errors, the user
will: 1) associate observations and 2) specify features. Then, Fixy
will automatically score and rank potential errors.

The analyst first associates observations within a time step (i.e.,
overlapping model predictions and human labels) and between
adjacent timesteps (i.e., objects across time). To do so, the user
can specify that observations with high box overlap are associated.
While this is provided by default by Fixy, the user can also write a
short amount of code using the intersection over union (IOU):

class TrackBundler(Bundler ):
def is_associated(self , box1 , box2):

return compute_iou(box1 , box2) > 0.5

The analyst then specifies features. As a concrete example, the
analyst may specify a feature that computes box volume. The user
need only provide code to compute the box volume: Fixy will learn
distribution of box volumes and use it to find anomalous boxes.

# KDEObsDistribution takes features and learns a
# KDE density estimator over the features
class VolumeDistribution(KDEObsDistribution ):

def feature(self , box):
vol = box.width * box.height * box.length
return vol

The user can also specify other features, such as object velocity.
The two code snippets above (and another other features the user
wishes to specify) are all that a user need to provide to Fixy.

Given the associations between observations and the features,
Fixywill learn the likelihood of encountering specific feature values
offline, using already-collected resources.

Once these feature distributions are learned, Fixy will score
and rank new data, ideally with potential errors ranked higher.
Concretely, consider Figure 1. Although not shown, an ML model
highlighted the truck in a time-consistent way. Since the track is
highly consistent, Fixy returns a high likelihood of an error. An
expert auditor can then verify if the potential error is actually a
missing label.

4 LEARNED OBSERVATION ASSERTIONS

The LOA DSL provides a simple means of specifying associations
between observations and specifying associations between obser-
vations and feature distributions. Intuitively, applications that con-
tain observations over time and over multiple modalities/models
may have observations that are associated across time/modalities.
Furthermore, feature distributions may operate over individual ob-
servations or groups of observations. We show an example of a
compiled LOA graph and corresponding sensor data observations
in Figure 2.

In this section, we provide a formal description of LOA. However,
users interface with LOA via a Python library. In particular, users
only need to specify features over which distributions are learned

and methods of associating observations. Our implementation pro-
vides class interfaces where users can override the feature compu-
tation (for the feature distributions) and the association method
(for associating observations). We show an example in Section 3 of
the code the user needs to provide.

4.1 Overview

LOA contains elements for allowing users to specify how observa-
tions interact with each other and how feature distributions interact
with observations. Our implementation of LOA is embedded in
Python for ease of integration with standard ML packages. Since
perception data often contains spatial and temporal components,
we allow users to construct observation bundles within a single
time step and tracks across time. We collectively refer to observa-
tions, bundles, and tracks as OBTs. LOA then allows features to be
specified over any OBT. Finally, the user can specify application
objective functions (AOFs) over any feature distribution.

4.2 Scene Syntax

Overview. We consider scenes of data, which consists of observa-
tions and features over these observations. Our syntax consists of
specifying how observations relate to each other within a scene
and how features relate to groups of observations.
Formalism. A scene consists of a set of tracks. Each track contains
a set of observation bundles. An observation bundle contains ob-
servations from different modalities, such as LIDAR, vision, and for
offline data, human proposals of labels. We summarize our syntax
notation in Table 1.

Formally, we denote the scene (i.e., set of tracks) as 𝑠 = {𝜏}.
Each track consists of an indexed sequence of observation bun-
dles, 𝜏 = (𝛽0, . . . , 𝛽𝑛). Each observation bundle consists of a set of
observations, 𝛽 = {𝜔𝜏,𝛽 }.

In order to reason about erroneous or unusual artifacts in the
perception system, we define features over the elements of the scene.
Users can assign features to any of the elements of the scene; these
assignments are often done automatically (e.g., a volume feature
would apply over every observation). Concretely, features can be
over observations, observation bundles, tracks, or entire scenes.

Formally, 𝜋 , the feature function, maps each element to its fea-
tures. For example, 𝜋 (𝜔𝜏,𝛽 ) are the features assigned to the observa-
tion in track 𝜏 in bundle 𝛽 , which could be a feature on the volume
of the object detected. Similarly, 𝜋 (𝜏) assigns track 𝜏 its features,
which could be the total number of observations within that track.

In addition to features over discrete groups of observations, we
provide syntax for features over adjacent observations within a
track (“transition features”), i.e., 𝜋 (𝛽𝑖 , 𝛽𝑖+1). As a concrete example,
we have implemented a transition feature for the estimated instan-
taneous velocity. We note that this syntax is for convenience, as
it could be implemented via track features. Nonetheless, we have
found it useful in our applications to allow for transition features.

Finally, AOFs can be specified over any feature distribution.
These AOFs are numeric transformations of the returned feature
distribution score, e.g., the identity function, the zero function, or
𝑓 (𝑥) = 1 − 𝑥 .
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Syntactic element Meaning
𝑠 Scene
𝜏 Track
𝛽 Observation bundle
𝜔 Observation
𝜋 Feature mapping function

Table 1: Table of syntactic elements in Fixy’s DSL.

4.3 Generating Graphical Models

Fixy will compile the scene, feature distributions, and AOFs to a
graphical model, which is used to score groups of observations.
Fixy uses these scores to flag potential errors.

To compile a scene, Fixy will create nodes for each observation
and feature distribution. Then, Fixy will create edges between each
feature distribution and the observation it applies over. If a feature
distribution applies to a single observation, Fixy will create a single
edge. If a feature distribution applies to a group of observations
(e.g., an observation bundle or track), Fixy will create one edge
between each observation in the group and the feature distribution.

Once the graphical model is constructed, Fixy can then score any
OBT. Fixy will score an observation by the negative log-likelihood
implied by its feature distributions. The score of a group of obser-
vations is the sum of the scores of the observations, normalized by
the number of feature distributions. We defer the full discussion of
scoring and a worked example to Section 6.

5 FEATURE DISTRIBUTIONS

A key component to scoring OBTs are the feature distributions.
Both our AV deployment and other organizations deploying ML
collect large amounts of training data. This training data contains
labels (potentially with errors), which can be used to fit empirical
distributions to the features. We leverage these existing labels in
this work, as they come at no additional cost.

To fit these feature distributions, Fixy takes as input scalar or
vector valued features over OBTs. For example, a feature over an
observation may take a bounding box and return the volume of the
box as described in Section 3. The user may also manually specify
feature distributions to rank severity (e.g., distance of an object to
the AV) or to filter certain instances (e.g., only search for errors in
detecting pedestrians). Finally, Fixy takes an optional AOF, which
can be applied per feature or over the resulting score.

We describe the feature types, their specification, and how Fixy
fits them below.

5.1 Feature Types

Fixy contains features over OBTs and transitions. While transi-
tion features can be implemented as track features, we provide a
syntactic element for ease of use.

Fixy’s first feature type are features over single observations.
Each feature is associated with a specific observation type (e.g., a
feature over a LIDARmodel prediction). These features are typically
used to specify time-independent information over the predictions.
For example, a feature may take a 3D box prediction from a LIDAR

model and return the box volume. The observation feature would
be over box volumes in this case.

Fixy’s second feature type are features over observation bundles.
These features are typically used to specify consistency between
observations of the same object in a single time step. For example,
consider the intuition that observations within bundles should
agree on object class. To specify this, a user could provide a feature
that returns 0 if all the classes agree and 1 otherwise. The feature
would then learn the Bernoulli probability of the class agreement
between observation types.

Fixy’s third feature type are features between observations or
bundles in adjacent time steps within a track. These features are
typically used to specify information over time-dependent quanti-
ties or consistency. For example, a feature could specify the velocity
estimated by box center offset.

Fixy’s fourth feature type are features over entire tracks. Al-
though rare, these features can be used to normalize scores over
entire tracks.

5.2 Learning Feature Distributions

Given features, Fixy can automatically fit feature distributions over
existing training datasets. To fit feature distributions, Fixy takes a
function that accepts a list of scalars/vectors and returns a fitted
distribution. By default, Fixy uses a kernel density estimator (KDE)
to learn feature distributions over the features. In some cases, other
types of distributions are appropriate (e.g., discrete distributions):
the user can override our default KDE estimator in these cases.

To learn feature distributions given a set of scenes, Fixy first
exhaustively generates the features over the data and collects the
scalar or vector values. Then, for each feature, Fixy executes the
fitting function over the scalar/vector values.

We note the density estimators have hyperparameters. We have
found that default hyperparameters work in all cases we tried, so
we defer exploring hyperparameters to future work.

5.3 Application Objective Functions

AOFs wrap data feature distributions to transform them into an
application-specific probabilities to guide the search for labeling
errors. As such, they take scalar values and return scalar values.
The most common operations are taking the inverse and setting
the probability to 0/1 under certain conditions. For example, when
searching for likely tracks, the application objective function may
be the identity. In contrast, when searching for unlikely tracks, the
application objective function may invert the probability.

6 SCORING RELATIVE PLAUSIBILITY

Given the compiled factor graph, Fixy can score any OBT. Fixy
will first score the observations via the sum of log likelihood of
the feature distributions transformed by the application objective
functions. Formally, given the AOFs 𝑓𝑖 , the score for an observation
𝜔 is ∑

𝜋𝑖 ∈𝜋 (𝜔)
ln (𝑓𝑖 (𝜋𝑖 (𝜔))) . (2)

The score of any component in the graph is the sum of the scores
of the observations, normalized by the total number of features that
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Figure 4: Example of a motorcycle (highlighted in red) missed by human proposals. We show both the LIDAR point cloud data

(top) and the camera view (bottom). The motorcycle is occluded by other vehicles, so only appears for a short period of time

(<1 second). Nonetheless, it is close to the AV and is thus important to predict.

connect to the component. We normalize by the number of features
so that components of different sizes are comparable (e.g., a track
with 10 observations compared to a track with 100 observations).

Consider the missing truck in Figure 1 and suppose the ML
model predicted it in two adjacent time steps (𝑡 = 1, 2) for simplicity.
Suppose the predicted box volumes are 44.8 m3 and 45.9 m3, and the
predicted velocity was 2 m/s. In this case, the scores of the volumes
may be 0.37 and 0.39 respectively, and the score for the velocity
may be 0.21. The score for the track would be (ln(0.37) + ln(0.39) +
ln(0.21))/3 = −1.17. Since Fixy only uses the score to rank, this
would be compared to other scores.

7 APPLICATIONS

We provide examples of applying Fixy to finding different kinds of
errors in ML applications. For all applications, we assume that the
predictions are 3D bounding boxes over LIDAR point cloud data.
We further assume access to two features: an observation feature
over box volume and a transition feature over estimated velocity.
Finding missing tracks. In this application, we are interested in
finding tracks that human proposals missed entirely. For example,
Figure 4 shows a motorcycle close to the AV but is only visible for
a short period of time due to occlusion. It is important to find such
errors as this may cause ML models to misclassify motorcycles at
deployment time.

To find such errors, we additionally execute a 3D bounding box
prediction model over the data. Given the MLmodel predictions, we
associate ML model predictions and human proposal in the same
frame if they have high box overlap.

The AOF zeros out any track that contains any human proposals.
The remaining tracks contain only model predictions and are scored
as usual, with the intuition that consistent predictions from the
model are likely to be correct. We show an example of a high
probability track (Figure 4) and low probability track (Figure 5).
Findingmissing labels within tracks. We are interested in find-
ing errors in labels proposed by humans that should belong to an

Figure 5: Example of an unlikely track. Predictions are in-

consistent within a track, suggesting that they are spurious.

Figure 6: Example of missing human label within a track

that Fixy can find. The left panel only contains anMLmodel

prediction while the right contains both a human label and

an ML model prediction.

Figure 7: Example of a low probability bundle that would

have a low rank. The box of the person and truck highly

overlap, but are strongly inconsistent in box volume.
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existing track. For example, Figure 6 shows a car trailing the AV,
where the first frame is missing the car box.

To find such errors, we use the 3D bounding box prediction
model’s predictions. The association of observations into bundles
is done as above. The AOF zeros out the probability of any bundle
that contains a human proposal and any track that does not contain
any human proposals. Thus, the remaining bundles only contain
ML model predictions and are in tracks that contain at least one
human proposal.

The remaining bundles are scored as usual, with the intuition
that predicted boxes that produce high probability bundles are likely
to be correct predictions. We show an example of a high probability
bundle (Figure 6) compared to a low probability bundle (Figure 7).
Finding erroneous ML model predictions. In this application,
we are interested in finding erroneous ML model predictions. As
such, we assume there are no human proposals. We show an exam-
ple of an erroneous track in Figure 9, where the truck is inconsis-
tently predicted.

The AOF inverts the probability of each feature, with the goal of
inverting the ranking of the tracks that are likely to be correct and
the tracks that are likely to be incorrect.

8 EVALUATION

We evaluated Fixy on whether it can find errors in ML pipelines.
We show that Fixy can find errors in human-proposed labels that
are difficult to specify with ad-hoc MAs and novel errors in ML
model predictions that prior work in ad-hoc MAs and uncertainty
sampling cannot find.

8.1 Experimental Setup

Datasets. We evaluated Fixy on two AV perception datasets: an
internal dataset from our research organization and the publicly
available Lyft Level 5 perception dataset [13]. The Lyft dataset has
been used to develop models [33] and host competitions [27]. Both
datasets consists of many scenes of LIDAR and camera data that
were densely labeled with 3D bounding boxes by leading external
vendors for human labels (“human-proposed labels”).

We executed Fixy on 46 scenes from the Lyft dataset (the entire
validation set, i.e., not seen at training time) and 13 scenes from
our internal dataset. Additionally, we asses the recall of Fixy on a
scene from our internal dataset that we vetted carefully.

The class labels, sampling rate, and physical sensor layout differ
between the two datasets, showing that Fixy can apply across
dataset characteristics.
Observation sources. We used three sources of observations over
the data: human-proposed labels, LIDAR ML model predictions
[16, 33], and expert auditor labels. All sources predict 3D bounding
boxes. We focus on the common classes of car, truck, pedestrian,
and motorcycle.
Features. We used the features shown in Table 2. These features
consist of features that were automatically learned from data (vol-
ume, velocity, count) in addition to features for selecting more
egregious errors (distance, model only).

Name Type Description
Volume Obs. Class-conditional box volume
Distance Obs. Distance to AV
Model only Bundle Selects bundles with model predictions

only
Velocity Trans. Class-conditional object velocity
Count Track Filters tracks with two or fewer obs.

Table 2: Description of features we used in this evaluation.

Model only and count were manually specified features.

Baselines. We compared against manually designed ad-hoc MAs
developed by Kang et al. [11] and uncertainty sampling. The ad-
hoc MAs were designed to find errors in similar settings to ours,
across both human-proposed labels and ML model predictions.
Uncertainty sampling is commonly used in active learning [26].

As we describe (Section 3), the users of Fixy are typically non-
experts in coding and ML tools. As such, we focus on simple ad-
hoc MAs (e.g., ones developed by Kang et al. [11]) and low-code
features in Fixy. Each feature required fewer than 6 lines of code
to implement.

Furthermore, both datasets were vetted by leading vendors for
human labels. Thus, we find errors that were not found in an exter-
nal audit.
Runtime. Since Fixy is primarily designed to operate in batch on
ingested data and shown to auditors, the latency per scene is not a
critical metric. Fixy executes in under five seconds on a single CPU
core for processing a 15 second scene of data. For context, auditing
a scene of data takes orders of magnitude longer, so this latency
can easily be hidden.

8.2 Fixy can Find Missing Tracks

We investigated whether Fixy could find errors in vendor-proposed
labels. We searched for tracks that were entirely missed by human
proposals, as these errors are the most egregious.
Experimental setup. To find tracks entirely missed by human la-
belers, we associated LIDAR observations and human observations
by box overlap within the same frame and associated observations
within a track by box overlap across time. We further deployed the
features described above. For the ad-hoc MA baseline, we used the
“consistency” assertion as described by Kang et al. [11]. For com-
parison purposes, we ordered the ML model predictions randomly
and by model confidence.

We manually checked the top 10 potential errors as proposed
by Fixy and ad-hoc model assertions (in some cases, fewer than
10 potential errors were flagged; we use the maximum number
in these cases). We measured the precision among these potential
errors, where a higher precision indicates that there are more errors
within the top 10 proposals. For the Lyft dataset, we measured the
precision across every scene in the validation set (i.e., data that was
not seen during model training) that we discovered errors. For our
internal dataset, we focused on the scene that failed audit.
Results: recall. To assess the recall of Fixy, we exhaustively au-
dited a 15 second scene from our internal dataset. It contained 24
missing tracks. In this scene, Fixy achieved a recall of 75%, finding



Conference’17, July 2017, Washington, DC, USA Daniel Kang, Nikos Arechiga, Sudeep Pillai, Peter Bailis, and Matei Zaharia

Method Dataset Precision at top 10 Precision at top 5 Precision at top 1
Fixy Lyft 69% 70% 67%

Ad-hoc MA (rand) Lyft 32% 30% 24%
Ad-hoc MA (conf) Lyft 39% 40% 39%
Fixy Internal 76% 100% 100%

Ad-hoc MA (rand) Internal 49% 64% 66%
Ad-hoc MA (conf) Internal 71% 86% 66%

Table 3: Precision at top 10 of Fixy and ad-hoc MA baselines for finding tracks missed by humans. Fixy used features and

ad-hoc MAs used the consistency assertion described by Kang et al. [11]. Fixy outperforms baselines by up to 2×.

18 of the missing tracks in the top 10 ranked errors per-class. We
believe this result is reflective of the larger dataset.

We further manually searched for errors in the Lyft dataset and
found errors in 32 of the 46 scenes. Unfortunately, due to the sheer
number of errors in the Lyft dataset, we were unable to perform
recall experiments on the level of boxes. However, LOA found errors
in 100% of the scenes with errors in the top 10 ranked errors.
Results: precision. Fixy outperforms on finding errors on preci-
sion in both datasets (Table 3) by aggregating information across
observations in tracks, which is difficult to do with ad-hoc MAs.

We show three examples of errors Fixy found in the Lyft dataset
in Figure 8. Many of these errors are close to the AV and are clearly
visible. These errors are problematic because they can confuse ML
models and could potentially cause downstream issues.
Discussion. To further contextualize our results, we note that Fixy
uncovered an error that wasmissed by an internal audit. Specifically,
the motorcycle track described in Section 7 (Figure 4) was not
found in our initial internal audit. Given the short time period the
motorcycle was visible, it can be difficult to find for both crowd
workers and auditors. Nonetheless, it is critical to be accurately
labeled for two key reasons. First, clean training data is critical for
liability purposes should an accident occur. Second, the motorcycle
is close to the autonomous vehicle, which is especially problematic
for downstream planning.

We note that our internal model does better than the public
model. This is primarily because the Lyft dataset is very noisy: our
internal model was trained on already audited data, which is of
higher quality and results in more calibrated model predictions.
These results highlight the need for high quality data: noisy data
results in lower performing models.

Furthermore, the open-sourced Lyft perception dataset has a
number of vehicles that were not labeled. We plan to open source
the errors we have found to aid in the development of consistent
labeling for the Lyft dataset.

8.3 Fixy can Find Missing Observations

Weadditionally searched formissing observations in human-proposed
tracks as a case study. To find missing human-proposed labels
within tracks, we applied the following AOF. We set the probability
of an observation in a bundle with a human proposal to 0. We set
the probability of any track without a human proposal to 0. For
Fixy, we then ranked the bundles by likelihood. For the ad-hoc MA
baseline, we random ordered bundles.

Within the datasets, we were only able to find a single example
of such a missing observation. For this example, Fixy ranked the

missing observation at the top. We show the missing observation
in Figure 6 and examples of low probability missing observations
in Figure 7. The feature distributions correctly identify consistent
predictions within tracks and correctly downweights inconsistent
predictions.

8.4 Fixy can Find Novel ML Prediction Errors

We further investigated whether or not Fixy can find errors in
LIDAR model predictions. For this use-case, we did not assume
access to human-proposed labels.
Experimental setup. Unlike for finding errors in human-proposed
labels, ad-hoc MAs can achieve high precision when searching for
errors in ML model predictions. As such, we deployed three ad-hoc
MAs as used in Kang et al. [11] (appear, flicker, and multibox).
Briefly, the appear assertion asserts that an observation should
have observations in nearby timestamps, the flicker assertion as-
serts than an observation should not appear and disappear rapidly,
and the multibox assertion asserts that 3 boxes should not over-
lap. These assertions can be reproduced in Fixy with hand-tuned
features.

In addition to ad-hoc MAs, we additionally compared to un-
certainty sampling, in which we sampled predictions around a
confidence threshold.

We then deployed Fixy to find errors in ML model prediction
after excluding the errors found by these ad-hoc MAs. We searched
for both localization and classification errors. For Fixy, we deployed
the same features as above with the exception of distance and model
only. We additionally deployed a track feature over the total number
of observations. We measure the precision of the top 10 potential
errors over 5 scenes in the Lyft dataset.
Results and discussion. Across these scenes, Fixy achieves a
precision at 10 of 82% while uncertainty sampling achieved a pre-
cision of 42%. We note that errors we found with Fixy were not
found by ad-hoc MAs. Many of these errors have tracks without
missing time stamps (so will not trigger the flicker assertion) and
are longer than two observations (so will not trigger the appear
assertion). We show an example of such a track in Figure 9, in which
the predictions overlap across frames, but in an unlikely way.

Furthermore, in contrast to uncertainty sampling, Fixy uncovers
errors with high model confidence. Fixy discovered errors in ML
model predictions with confidences as high as 95%, which uncer-
tainty sampling would miss.
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(a) Example of a missing car in motion. (b) Example of a missing car in motion. (c) Example of missing cars.

Figure 8: Examples of labeling errors in the Lyft dataset. The missing objects in these examples can be within 20 meters the

autonomous vehicle and several are in motion: vehicles in motion are the most important to detect.

(a) 𝑡 = 0 (b) 𝑡 = 1 (c) 𝑡 = 2

Figure 9: Example of a model error (in black) in the Lyft dataset not found by ad-hoc model assertions. We show ground-truth

boxes from human labels in orange for reference. The erroneous prediction overlaps across frames, but is not consistent. Fixy

can find such errors as they produce unlikely values under learned feature distributions.

9 RELATEDWORK

Data cleaning. Data quality is of paramount concern, especially in
ML pipelines. Work in the data systems community has focused on
cleaning tabular data [7, 23]. This work focuses largely on detecting
errors via constraints [3–5] and more recently machine learning [9,
14, 25]. Unfortunately, these techniques do not directly apply to the
labels in many ML pipelines, thus necessitating the need for new
abstractions and systems for ML data.
Enriching data and weak supervision. Other work in the data
systems community aims to clean or enrich data, often with the
goal of training ML models. For example, HoloClean automatically
aggregates noisy cleaning rules in a statistical fashion [9, 25]. In
this work, we focus on high quality training data in mission-critical
settings as opposed to noisy cleaning rules.

Other work uses weak labels or organizational resources to train
models with little labeled data. For example, users can specify noisy
labeling functions that are aggregated to train models [24]. Other
work uses organizational resources, e.g., embeddings and knowl-
edge bases, to adapt models to new modalities [28]. In mission-
critical pipelines, these methods still need to be validated with a
high-quality dataset, so require labels [24]. We leverage different
organizational resources (existing labels and models) to find errors
in labels, as opposed to training new models with fewer labels.
ML testing. According to a recent survey [32], existing work in
ML testing focuses on pipelines where schemas have meaningful
information, such as categorical or numeric data [10, 20, 21]. While
important for deployments with schemas, they do not apply to the
settings we consider. Other work considers statistical measures of

accuracy [1], fuzzing for numeric errors [18], worst case pertur-
bations [31], data linting [10], and other techniques [19]. These
approaches are complementary to Fixy.

In this work, we primarily focus on finding errors in complex
perception training data andmodel errors. To our knowledge, model
assertions are closest line of work; see Section 2 for an extended
discussion of MAs [11]. Briefly, users must manually specify MAs
and severity scores, which can be challenging in practice and miss
important classes of errors.
Factor graphs. The closest analog of LOA in the Bayesian setting
are factor graphs [8, 15] that are widely used in robot perception.
Factor graphs are a probabilistic tool to encode and factorize the
joint distribution of random variables as a product of locally, con-
ditionally independent functions. Modern mapping [17], tracking
[22], and localization [8] in robot perception use factor graphs to
incorporate spatiotemporal, and multi-modal measurements into a
probabilistic framework for Bayesian interpretation.We formulate a
similar graphical framework to jointly reason over domain-specific
feature distributions and application objective functions, compos-
ing together to form MA graphs. However, unlike robot perception
applications that incorporate raw sensor measurements as individ-
ual factors, we incorporate both model predictions and object priors
as factors in Fixy in order to acausally reason over the individual
model prediction measurements.

10 DISCUSSION AND FUTUREWORK

We believe that Fixy is an exciting first step towards data manage-
ment for complex, unstructured ML data. However, while effective
at its particular task, many questions remain.
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For example, Fixy was tailored for autonomous vehicle sensor
data, but it may also be applicable to other domains with tempo-
ral aspects, such as audio or time series data. We view ML data
management in a variety of domains, both for unstructured and
structured data, to be an exciting area of future research.

Fixy also assumes independence between features and that fea-
tures are not misspecified. While these assumptions produce rea-
sonable results, more sophisticated graphical models and learning
may help in ML data management.

11 CONCLUSION

To address the problem of finding errors in labels andMLmodels, we
propose LearnedObservationAssertions (LOA) and implement Fixy.
LOA allows users to specify data-driven feature distributions to
indicate which data points are potentially erroneous. Our prototype
implementation of LOA, Fixy, leverages existing organizational
resources (trained ML models and existing labeled data) to find
labeling errors. We show that Fixy can find errors in human labels
up to 2× more effectively than prior research work.
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