
BlazeIt: Optimizing Declarative Aggregation and Limit
Queries for Neural Network-Based Video Analytics

Daniel Kang, Peter Bailis, Matei Zaharia
Stanford DAWN Project

blazeit@cs.stanford.edu

ABSTRACT
Recent advances in neural networks (NNs) have enabled auto-
matic querying of large volumes of video data with high accuracy.
While these deep NNs can produce accurate annotations of an ob-
ject’s position and type in video, they are computationally expen-
sive and require complex, imperative deployment code to answer
queries. Prior work uses approximate filtering to reduce the cost
of video analytics, but does not handle two important classes of
queries, aggregation and limit queries; moreover, these approaches
still require complex code to deploy. To address the computa-
tional and usability challenges of querying video at scale, we in-
troduce BLAZEIT, a system that optimizes queries of spatiotem-
poral information of objects in video. BLAZEIT accepts queries
via FRAMEQL, a declarative extension of SQL for video analytics
that enables video-specific query optimization. We introduce two
new query optimization techniques in BLAZEIT that are not sup-
ported by prior work. First, we develop methods of using NNs as
control variates to quickly answer approximate aggregation queries
with error bounds. Second, we present a novel search algorithm for
cardinality-limited video queries. Through these these optimiza-
tions, BLAZEIT can deliver up to 83× speedups over the recent
literature on video processing.

PVLDB Reference Format:
Daniel Kang, Peter Bailis, Matei Zaharia. BlazeIt: Optimizing Declarative
Aggregation and Limit Queries for Neural Network-Based Video Analytics.
PVLDB, 13(4): 533 - 546, 2019.
DOI: https://doi.org/10.14778/3372716.3372725

1. INTRODUCTION
Two trends have caused recent interest in video analytics. First,

cameras are now cheap and widely deployed, e.g., London alone
has over 500,000 CCTVs [2]. Second, deep neural networks
(DNNs) can automatically produce annotations of video. For ex-
ample, object detection DNNs [20] return a set of bounding boxes
and object classes given an image or frame of video. Analysts can
use these DNNs to extract object positions and types from every
frame of video, a common analysis technique [62]. In this work,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3372716.3372725

we study the batch setting, in which large quantities of video are
collected for later analysis [6, 37, 46].

While DNNs are accurate [32], naively employing them has two
key challenges. First, from a usability perspective, these methods
require complex, imperative programming across many low-level
libraries, such as OpenCV, Caffe2, and Detectron [26]—an ad-
hoc, tedious process. Second, from a computational perspective,
the naive method of performing object detection on every frame of
video is cost prohibitive at scale: state-of-the-art object detection,
e.g., Mask R-CNN [32], runs at 3 frames per second (fps), which
would take 8 GPU-decades to process 100 camera-months of video.

Researchers have recently proposed optimizations for video ana-
lytics, largely focusing on filtering via approximate predicates [6,9,
46,55]. For example, NOSCOPE and TAHOMA train cheaper, proxy
models for filtering [6, 46]. However, these optimizations do not
handle two key classes of queries: aggregate and limit queries. For
example, an analyst may want to count the average number of cars
per frame (aggregate query) or manually inspect only 10 instances
of a bus and five cars (limit query) to understand congestion. Ap-
proximate filtering is inefficient for these queries, e.g., filtering for
cars will not significantly speed up counting cars if 90% of the
frames contain cars. Furthermore, these optimizations still require
non-expert users to write complex code to deploy.

To address these usability and computational challenges, we
present BLAZEIT, a video analytics system with a declarative query
language and two novel optimizations for aggregation and limit
queries. BLAZEIT’s declarative query language, FRAMEQL, ex-
tends SQL with video-specific functionality and allows users fa-
miliar with SQL to issue video analytics queries. Since queries are
expressed declaratively, BLAZEIT can automatically optimize them
end-to-end with its query optimizer and execution engine. Finally,
BLAZEIT provides two novel optimizations for aggregation and
limit queries that outperforms prior work, including NOSCOPE [46]
and approximate query processing (AQP), by up to 83×.

FRAMEQL allows users to query information of objects in
video through a virtual relation. Instead of fully materializing
the FRAMEQL relation, BLAZEIT uses optimizations to reduce
the number of object detection invocations while meeting an accu-
racy guarantee based on the specification of the FRAMEQL query
(Figure 1). FRAMEQL’s relation represents the information of po-
sitions and classes of objects in the video. Given this relation,
FRAMEQL can express selection queries in prior work [6,9,46,55],
along with new classes of queries, including aggregation and limit
queries (§4).

Our first optimization, to answer aggregation queries, uses query-
specific NNs (i.e., specialized NNs [46]) as a control variate or to
directly answer queries (§6). Control variates are a variance reduc-
tion technique that uses an auxiliary random variable that is corre-

Target
DNN

Answer

Query

Materialized
Relation

Custom
Code

DBMS

Video

2.3
buses/frame

User-written

(a) Schematic of the naive method of querying video. Naively using DNNs or
human annotators is too expensive for many applications.

BlazeIt: Query-aware Optimization
Video

Target DNN

Virtual Relation
(materialized on demand)

Query Processor
(specialized NNs)

SELECT FCOUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1
AT CONFIDENCE 95%

Answer
2.3

buses/frame

FrameQL Query

(b) Schematic of BLAZEIT. BLAZEIT will create optimized query plans and
avoid calling the expensive DNN where possible.

Figure 1: Schematic of the naive method of querying video and BLAZEIT. BLAZEIT does not require writing complex code and does not
require pre-materializing all the tuples.

lated with the statistic of interest to reduce the number of samples
necessary for a given error bound [28]. We show how to use spe-
cialized NNs as a control variate, a novel use of specialized NNs
(which have been used for approximate filtering). In contrast, stan-
dard random sampling does not leverage proxy models and prior
work (filtering) is inefficient when objects appear frequently.

Our second optimization, to answer cardinality-limited queries
(e.g., a LIMIT query searching for 10 frames with at least three
cars), evaluates object detection on frames that are more likely to
contain the event using proxy models (§7). By prioritizing frames
to search over, BLAZEIT can achieve exact answers while speeding
up query execution. In contrast, filtering is inefficient for frequent
objects and random sampling is inefficient for rare events.

Importantly, both of our optimizations provide exact answers or
accuracy guarantees regardless of the accuracy of the specialized
NNs. Furthermore, both of these optimizations can be extended to
account for query predicates.

BLAZEIT incorporates these optimizations in an end-to-end sys-
tem with a rule-based query optimizer and execution engine that
efficiently executes FRAMEQL queries. Given query contents,
BLAZEIT will generate an optimized query plan that avoids exe-
cuting object detection wherever possible, while maintaining the
user-specified accuracy (relative to the object detection method as
ground truth).

We evaluate BLAZEIT on a variety of queries on four video
streams that are widely used in studying video analytics [9, 37, 40,
46, 70] and two new video streams. We show that BLAZEIT can
achieve up to 14× and 83× improvement over prior work in video
analytics and AQP for aggregation and limit queries respectively.

In summary, we make the following contributions:
1. We introduce FRAMEQL, a query language for spatiotempo-

ral information of objects in videos, and show it can answer
a variety of real-world queries, including aggregation, limit,
and selection queries.

2. We introduce an aggregation algorithm that uses control vari-
ates to leverage specialized NNs for more efficient aggrega-
tion than existing AQP methods by up to 14×.

3. We introduce an algorithm for limit queries that uses spe-
cialized NNs and can deliver up to 83× speedups over recent
work in video analytics and random sampling.

2. EXAMPLE USE CASES
Recall that we focus on the batch setting in this work. We give

several scenarios where BLAZEIT could be applied:

Urban planning. Given a set of traffic cameras at street corners,
an urban planner performs traffic metering based on the number of

SELECT FCOUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1
AT CONFIDENCE 95%

(a) The FRAMEQL query for
counting the frame-averaged
number of cars within a specified
error and confidence.

SELECT timestamp
FROM taipei
GROUP BY timestamp
HAVING SUM(class='bus')>=1

AND SUM(class='car')>=5
LIMIT 10 GAP 300

(b) The FRAMEQL query for select-
ing 10 frames of at least one bus and
five cars, with each frame at least 300
frames apart (10s at 30 fps).

SELECT *
FROM taipei
WHERE class = 'bus' AND redness(content) >= 17.5
AND area(mask) > 100000

GROUP BY trackid HAVING COUNT(*) > 15

(c) The FRAMEQL query for selecting all the information of red buses at
least 100,000 pixels large, in the scene for at least 0.5s (15 frames). The
last constraint is for noise reduction.

Figure 2: Three FRAMEQL example queries. As shown, the syn-
tax is largely standard SQL.

(a) Red tour bus. (b) White transit bus.
Figure 3: Examples of buses in taipei. A city planner might be
interested in distinguishing tour buses from transit buses and uses
color as a proxy.

cars, and determines the busiest times [69]. The planner is inter-
ested in how public transit interacts with congestion [16] and looks
for 10 events of at least one bus and at least five cars. Then, the
planner seeks to understand how tourism affects traffic and looks
for red buses as a proxy for tour buses (see Figure 3).

Autonomous vehicle analysis. An analyst studying AVs notices
anomalous behavior when the AV is in front of a yellow light and
there are multiple pedestrians in the crosswalk [23], and searches
for such events.

Store planning. A retail store owner places a CCTV in the
store [66]. The owner segments the video into aisles and counts
the number of people that walk through each aisle to understand
the flow of customers. This information can be used for planning
store and aisle layout.

Ornithology. An ornithologist (a scientist who studies birds) is in-
terested in understanding bird feeding patterns, so places a webcam
in front of a bird feeder [1]. Then, the ornithologist puts different
bird feed on the left and right side of the feeder and counts the num-
ber of birds that visit each side. Finally, as a proxy for species, the
ornithologist might then select red or blue birds.

These queries can be answered using spatiotemporal information
of objects in the video, along with simple user-defined functions
(UDFs) over the content of the boxes. Thus, these applications
illustrate a need for a unified method of expressing such queries.

3. BLAZEIT SYSTEM OVERVIEW
BLAZEIT’s goal is to execute FRAMEQL queries as quickly as

possible; we describe FRAMEQL in §4. To execute FRAMEQL
queries, BLAZEIT uses a target object detection method, an entity
resolution method, and the optional user-defined functions (UDFs).
We describe the specification of these methods in this section and
describe our defaults in §8. Importantly, we assume the object de-
tection class types are provided.

BLAZEIT executes queries quickly by avoiding materialization
using the techniques described §6 and §7. BLAZEIT uses proxy
models, typically specialized neural networks [46,68], to avoid ma-
terialization (Figure 1b), which we describe below.

3.1 Components
Configuration. We assume the target object detection method is
implemented with the following API:

OD(frame)→ Set<Tuple<class, box>> (1)

and the object classes (i.e., types) are provided. We assume the en-
tity resolution takes two nearby frames and boxes and returns true if
the boxes correspond to the same object. While we provide defaults
(Section 8), the object detection and entity resolution methods can
be changed, e.g., a license plate reader could be used for resolving
the identity of cars. The UDFs can be used to answer more com-
plex queries, such as determining color, filtering by object size or
location, or fine-grained classification. UDFs are functions that ac-
cept a timestamp, mask, and rectangular set of pixels. For example,
to compute the “redness” of an object, a UDF could average the red
channel of the pixels.

Target-model annotated set (TMAS). At ingestion time,
BLAZEIT will perform object detection over a small sample of
frames of the video with the target object detection NN and will
store the metadata as FRAMEQL tuples, which we call the target-
model annotated set (TMAS). This procedure is done when the data
is ingested and not per query, namely it is performed once, offline,
and shared for multiple queries later. For a given query, BLAZEIT
will use this metadata to materialize training data to train a query-
specific proxy model; details are given in §6 and §7. The TMAS is
split into training data and held-out data.

Proxy models and specialized NNs. BLAZEIT can infer proxy
models and/or filters from query predicates, many of which must
be trained from data. These proxy models can be used to accelerate
query execution with accuracy guarantees.

Throughout, we use specialized NNs [46,67], specifically a minia-
turized ResNet [33] (§8), as proxy models. A specialized NN is a
NN that mimics a larger NN (e.g., Mask R-CNN) on a simplified
task, e.g., on a marginal distribution of the larger NN. As special-
ized NNs predict simpler output, they can run dramatically faster.

BLAZEIT will infer if a specialized NN can be trained from
the query specification. For example, to replicate NOSCOPE’s bi-
nary detection, BLAZEIT would infer that there is a predicate for

Table 1: FRAMEQL’s data schema contains spatiotemporal and
content information related to objects of interest, as well as meta-
data (class, identifiers). Each tuple represents an object appearing
in one frame; thus a frame may have many or no tuples. The fea-
tures can be used for downstream tasks.

Field Type Description
timestamp float Time stamp
class string Object class (e.g., bus, car)
mask (float, float)* Polygon containing the object

of interest, typically a rectangle
trackid int Unique identifier for a continuous

time segment when the
object is visible

content float* Content of pixels in mask
features float* The feature vector output by the

object detection method.

whether or not there is an object of interest in the frame and train
a specialized NN to predict this. Prior work has used specialized
NNs for binary detection [31, 46], but we extend specialization for
aggregation and limit queries.

3.2 Limitations
While BLAZEIT can answer a significantly wider range of video

queries than prior work, we highlight several limitations.

TMAS. BLAZEIT requires the object detection method to be run
over a portion of the data for training specialized NNs and filters
as a preprocessing step. Other contemporary systems also require
a TMAS [37, 46].

Model drift. BLAZEIT targets on the batch analytics setting
where the TMAs can be sampled i.i.d. from the data. However,
in the streaming setting, where the data distribution may change,
BLAZEIT will still provide accuracy guarantees but performance
may be reduced. Namely, the accuracy of BLAZEIT’s special-
ized NNs may degrade relative to the target model. As a result,
BLAZEIT may execute queries more slowly, but this will not affect
accuracy (§5). This effect can be mitigated by labeling a portion of
new data and monitoring drift or continuous retraining.

Object detection. BLAZEIT depends on the target object detec-
tion method and does not support object classes beyond what the
method returns, e.g., the pretrained Mask R-CNN [26, 32] can de-
tect cars, but cannot distinguish between sedans and SUVs. How-
ever, users can supply UDFs if necessary.

4. FRAMEQL: EXPRESSING COMPLEX
SPATIOTEMPORAL VISUAL QUERIES

To address the need for a unifying query language over video an-
alytics, we introduce FRAMEQL, an extension of SQL for query-
ing spatiotemporal information of objects in video. By providing a
table-like schema using the standard relational algebra, we enable
users familiar with SQL to query videos, whereas implementing
these queries manually would require expertise in deep learning,
computer vision, and programming.

FRAMEQL is inspired by prior query languages for video analyt-
ics [18, 48, 50, 54], but FRAMEQL specifically targets information
that can be populated automatically using computer vision meth-
ods. We discuss differences in detail at the end of this section.

FRAMEQL data model. FRAMEQL represents videos (possibly
compressed in formats such as H.264) as virtual relations, with one
relation per video. Each FRAMEQL tuple corresponds to a single
object in a frame. Thus, a frame can have zero or more tuples (i.e.,

SELECT * | expression [, ...]
FROM table_name
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[LIMIT count]
[GAP count]
[ERROR WITHIN tol AT CONFIDENCE conf]

Figure 4: FRAMEQL syntax. As shown, FRAMEQL largely inher-
its SQL syntax.

zero or more objects), and the same object can have one or more
tuples associated with it (i.e., appear in several frames).

We show FRAMEQL’s data schema in Table 1. It contains
fields relating to the time, location, object class, and object iden-
tifier, the box contents, and the features from the object detec-
tion method. BLAZEIT can automatically populate mask, class,
and features from the object detection method (see Eq. 1),
trackid from the entity resolution method, and timestamp
and content from the video metadata. Users can override the de-
fault object detection and entity resolution methods. For example,
an ornithologist may use an object detector that can detect different
species of birds, but an autonomous vehicle analyst may not need
to detect birds at all.1

FRAMEQL query format. FRAMEQL allows selection, pro-
jection, and aggregation of objects, and, by returning relations,
can be composed with standard relational operators. We show the
FRAMEQL syntax in Figure 4. FRAMEQL extends SQL in three
ways: GAP, syntax for specifying an error tolerance (e.g., ERROR
WITHIN), and FCOUNT. Notably, we do not support joins as we do
not optimize for joins in this work, but we describe how to extend
FRAMEQL with joins in an extended version of this paper [44].
We show FRAMEQL’s extensions Table 2; several were taken from
BlinkDB [5]. We provide the motivation behind each additional
piece of syntax.

First, when the user selects timestamps, the GAP keyword en-
sures that the returned frames are at least GAP frames apart. For
example, if 10 consecutive frames contain the event and GAP =
100, only one frame of the 10 frames would be returned.

Second, as in BlinkDB [5], users may wish to have fast responses
to exploratory queries and may tolerate some error. Thus, we al-
low the user to specify error bounds in the form of maximum ab-
solute error, false positive error, and false negative error, along
with a specified confidence level (e.g., Figure 2a). NOSCOPE’s
pipeline can be replicated with FRAMEQL using these constructs.
We choose absolute error bounds in this work as the user may in-
advertanely execute a query with 0 records, which would require
scanning the entire video (§6).

We also provide a short-hand for returning a frame-averaged
count, which we denote as FCOUNT. For example, consider two
videos: 1) a 10,000 frame video with one car in every frame, 2) a 10
frame video with a car only in the first frame. FCOUNT would re-
turn 1 in the first video and 0.1 in the second video. As videos vary
in length, this allows for a normalized way of computing errors.
FCOUNT can easily be transformed into a time-averaged count.
Window-based analytics can be done using the existing GROUP
BY keyword.

FRAMEQL examples. We describe how the some of the example
use cases from §2 can be written in FRAMEQL. We assume the
video is recorded at 30 fps.

1BLAZEIT will inherit any errors from the object detection and en-
tity resolution methods.

Table 2: Additional syntactic elements in FRAMEQL. Some of
these were adapted from BlinkDB [5].

Syntactic
element Description

FCOUNT Frame-averaged count (equivalent to
time-averaged count), i.e.,
COUNT(*) / MAX(timestamp)

ERROR WITHIN Absolute error tolerance
FPR WITHIN Allowed false positive rate
FNR WITHIN Allowed false negative rate
CONFIDENCE Confidence level
GAP Minimum distance between returned frames

Table 3: A comparison of object detection methods, filters, and
speeds. More accurate object detection methods are more expen-
sive. Specialized NNs and simple filters are orders of magnitude
more efficient than object detection methods.

Method mAP FPS
YOLOv2 [62] 25.4 80
Mask R-CNN [32] 45.2 3
Specialized NN N/A 35k
Decoding low-resol video N/A 62k
Color filter N/A 100k

Figure 2a shows how to count the average number of cars in a
frame. The query uses FCOUNT as the error bounds are computed
per-frame. Figure 2b shows how to select frames with at least one
bus and at least five cars, which uses the GAP keyword to ensure
events are a certain time apart. At 30 fps, GAP 300 corresponds
to 10 seconds. Figure 2c shows how to exhaustively select frames
with red buses. Here, redness and area are UDFs, as described
in §3. The other example use cases can be answered similarly.

Comparison to prior languages. Prior visual query engines have
proposed similar schemas, but assume that the relation is already
populated [47, 52], i.e., that the data has been created through ex-
ternal means (typically by humans). In contrast, FRAMEQL’s re-
lation can be automatically populated by BLAZEIT. However, as
we focus on exploratory queries in this work, FRAMEQL’s schema
is virtual and rows are only populated as necessary for the query
at hand, which is similar to an unmaterialized view. This form of
laziness enables a variety of optimizations via query planning.

5. QUERY OPTIMIZER OVERVIEW
Overview. BLAZEIT’s primary challenge is executing FRAMEQL
queries efficiently: recall that object detection is the overwhelming
bottleneck (Table 3). To optimize and execute queries, BLAZEIT
inspects query contents to see if optimizations can be applied. For
example, BLAZEIT cannot optimize aggregation queries without
error bounds, but can optimize aggregation queries with a user-
specified error tolerance.

BLAZEIT leverages two novel optimizations to reduce the com-
putational cost of object detection, targeting aggregation (§6) and
limit queries (§7). As the filters and specialized NNs we consider
are cheap compared to the object detection methods, they are al-
most always worth calling: a filter that runs at 100,000 fps would
need to filter 0.003% of the frames to be effective (Table 3). Thus,
we have found a rule-based optimizer to be sufficient in optimizing
FRAMEQL queries.

Both of BLAZEIT’s novel optimizations share a key property:
they still provide accuracy guarantees despite using potentially in-
accurate specialized NNs. Specifically, both optimization will only

speed up query execution and will not affect the accuracy of queries;
full details are in §6 and §7.

BLAZEIT also can optimize exhaustive selection queries with
predicates by implementing optimizations in prior work, such as
using NOSCOPE’s specialized NNs as a filter [46, 55]. As this case
has been studied, we defer the discussion of BLAZEIT’s query op-
timization for exhaustive selection to an extended paper [44].

BLAZEIT’s rule-based optimizer will inspect the query specifica-
tion to decide which optimizations to apply. First, if the query spec-
ification contains an aggregation keyword, e.g., FCOUNT, BLAZEIT
will apply our novel optimization for fast aggregation. Second,
if the query specification contains the LIMIT keyword, BLAZEIT
will apply our novel optimization for limit queries. Finally, for all
other queries, BLAZEIT will default to applying filters similar to
NOSCOPE’s [46].

Work reuse. In addition to our novel optimizations, BLAZEIT can
reuse work by storing the specialized NN model weights and their
results. The specialized NNs BLAZEIT uses are small, e.g., < 2
MB, compared to the size of the video.

We describe the intuition, the physical operator(s), its time com-
plexity and correctness, and the operator selection procedure for
aggregates (§6) and limit queries (§7) below.

6. OPTIMIZING AGGREGATES
Overview. In an aggregation query, the user is interested in some
statistic over the data, such as the average number of cars per frame;
see Figure 2a for an example. To provide exact answers, BLAZEIT
must call object detection on every frame, which is prohibitively
slow. However, if the user specifies an error tolerance, BLAZEIT
accelerate query execution using two novel optimizations.

We focus on optimizing counting the number of objects in a
frame. BLAZEIT requires training data from the TMAS (§2) of
the desired quantity (e.g., number of cars) to leverage specialized
NNs. If there is insufficient training data, BLAZEIT will default
to random sampling. If there is sufficient training data, BLAZEIT
will first train a specialized NN to estimate the statistic: if the spe-
cialized NN is accurate enough, BLAZEIT can return the answer
directly. Otherwise, BLAZEIT will use specialized NNs to reduce
the variance of AQP via control variates [28], requiring fewer sam-
ples. We next describe these steps in detail.

Operator Selection. The process above is formalized in Algo-
rithm 1. BLAZEIT will process the TMAS into training data for a
specialized NN by materializing labels, i.e., counts. Given these
labels, BLAZEIT first determines whether there is sufficient train-
ing data (> 1% of the data has instances of the object; this choice
will only affect runtime, not accuracy) to train a specialized NN.
In cases where the training data does not contain enough examples
of interest (e.g., a video of a street intersection is unlikely to have
bears), BLAZEIT will default to standard random sampling. We use
an adaptive sampling algorithm that respects the user’s error bound
but can terminate early based on the variance of the sample [56].

When there is sufficient training data, BLAZEIT will train a spe-
cialized NN and estimate its error rate on the held-out set. If the
error is smaller than the specified error at the confidence level, it
will then execute the specialized NN on the unseen data and re-
turn the answer directly. For specialized NN execution, BLAZEIT
will subsample at twice minimum frequency of objects appearing;
the minimum frequency is estimated from the TMAS. Sampling at
this rate, i.e., the Nyquist rate [57], will ensure that BLAZEIT will
sample all objects. As specialized NNs are significantly faster than
object detection, this procedure results in much faster execution.

Data: TMAS, unseen video,
uerr ← user’s requested error rate,
conf ← user’s confidence level
Result: Estimate of requested quantity
if training data has instances of object then

train specialized NN on TMAS;
err ← specialized NN error rate;
τ ← average of specialized NN over unseen video;
if P (err < uerr) < conf then

return τ ;
else

m̂← result of Equation 2 (control variates);
return m̂;

end
else

Return result of random sampling.;
end

Algorithm 1: BLAZEIT’s aggregation query procedure.
BLAZEIT will use specialized NNs for accelerated query ex-
ecution via control variates or query rewriting where possible.

When the specialized NN is not accurate enough, it is used as
a control variate: a cheap-to-compute auxiliary variable correlated
with the true statistic. Control variates can approximate the statistic
with fewer samples than naive random sampling.

Physical Operators. We describe the procedures for sampling,
query rewriting, and control variates below.

Sampling. When the query contains a tolerated error rate and
there is not sufficient training data for a specialized NN, BLAZEIT
samples from the video, populating at most a small number of rows
for faster execution. Similar to online aggregation [34], we provide
absolute error bounds, but the algorithm could be easily modified
to give relative error bounds. BLAZEIT uses Empirical Bernstein
stopping (EBS) [56], which allows for early termination based on
the variance, which is useful for control variates. We specifically
use Algorithm 3 in [56]; we give an overview of this algorithm in
an extended version of this paper [44].

EBS provides an always valid, near-optimal stopping rule for
bounded random variables. EBS is always-valid in the sense that
when EBS terminates, it will respect the user’s error bound and
confidence; the guarantees come from a union bound [56]. EBS is
near-optimal in the following sense. Denote the user-defined error
and confidence as ε and δ. Denote the range of the random variable
to be R. EBS will stop within c · log log 1

ε·|µ| of any optimal stop-
ping rule that satisfies ε and δ. Here, c is a constant and |µ| is the
mean of the random variable.

Query Rewriting via Specialized NNs. In cases where the spe-
cialized NN is accurate enough (as determined by the bootstrap on
the held-out set; the accuracy of the specialized NN depends on
the noisiness of the video and object detection method), BLAZEIT
can return the answer directly from the specialized NN run over
all the frames for dramatically faster execution and bypass the ob-
ject detection entirely. BLAZEIT uses multi-class classification for
specialized NNs to count the number of objects in a frame.

To train the specialized NN, BLAZEIT selects the number of
classes equal to the highest count that is at least 1% of the video
plus one. For example, if 1% of the video contains 3 cars, BLAZEIT
will train a specialized NN with 4 classes, corresponding to 0, 1, 2,
and 3 cars in a frame. BLAZEIT uses 150,000 frames for training
and uses a standard training procedure for NNs (SGD with momen-
tum [33]) for one epoch with a fixed learning rate of 0.1.

a(t)

m(t)

Time (t)

N
um

be
r o

f c
ar

s

Figure 5: Schematic of control variates. Here, a(t) is the result
of the specialized NN and m(t) is the result of object detection. a
is cheap to compute, but possibly inaccurate. Nonetheless, m̂ =
m + c · (a − E[a]) has lower variance than m; thus we can use a
to compute E[m] with fewer samples from m.

BLAZEIT estimates the error of the specialized NN on a held-out
set using the bootstrap [19]. If the error is low enough at the given
confidence level, BLAZEIT will process the unseen data using the
specialized NN and return the result.

Control Variates. In cases where the user has a stringent error tol-
erance, specialized NNs may not be accurate enough to answer a
query on their own. To reduce the cost of sampling from the object
detector, BLAZEIT introduces a novel method of using specialized
NNs while still guaranteeing accuracy. In particular, we adapt the
method of control variates [28] to video analytics (to our knowl-
edge, control variates have not been applied to database query op-
timization or video analytics). Specifically, control variates is a
method of variance reduction [42,64]) which uses a proxy variable
correlated with the statistic of interest. Intuitively, by reducing the
variance of sampling, we can reduce the number of frames that have
to be sampled and processed by the full object detector.

To formalize this intuition, suppose we wish to estimate the ex-
pectation m and we have access to an auxiliary variable a. The
desiderata for a are that: 1) a is cheaply computable, 2) a is cor-
related with m (see time complexity). We further assume we can
compute E[a] = α and Var(a) exactly. Then,

m̂ = m+ c · (a− α) (2)

is an unbiased estimator ofm for any choice of c [28]. The optimal
choice of c is c = −Cov(m,a)

Var(a)
and using this choice of c gives

Var(m̂) = (1 − Corr(m,a)2)Var(m). As an example, suppose
a = m. Then, m̂ = m+ c(m−E[m]) = E[m] and Var(m̂) = 0.

This formulation works for arbitrary a, but choices where a is
correlated with m give the best results. As we show in §9.2, spe-
cialized NNs can provide a correlated signal to the ground-truth
object detection method for all queries we consider.

As an example, suppose we wish to count the number of cars per
frame; we show a schematic in Figure 5. Then, m is the random
variable denoting the number of cars the object detection method
returns. In BLAZEIT, we train a specialized NN to count the num-
ber of cars per frame. Ideally, the specialized NN would exactly
match the object detection counts, but this is typically not the case.
However, the specialized NNs are typically correlated with the true
counts. Thus, the random variable awould be the output of the spe-
cialized NN. As our choice of specialized NNs are extremely cheap
to compute, we can calculate their mean and variance exactly on all
the frames. BLAZEIT estimates Cov(m,a) at every round.

Aggregation with query predicates. A user might issue an ag-
gregation query that contains predicates such as filtering for large

red buses (see Figure 3). In this case, BLAZEIT will execute a simi-
lar procedure above, but first applying the predicates to the training
data. The key difference is that in cases where there is not enough
training data, BLAZEIT will instead generate a specialized NN to
count the most selective set of predicates that contains enough data.

For example, consider a query that counts the number of large
red buses. If there is not enough data to train a specialized NN that
counts the number of large red buses, BLAZEIT will instead train a
specialized NN that counts the number of large buses (or red buses,
depending on the training data). If there is no training data for the
quantity of interest, BLAZEIT will default to standard sampling.

As control variates only requires that the proxy variable, i.e., the
specialized NN in this case, be correlated with the statistic of in-
terest, BLAZEIT will return a correct answer even if it trains a spe-
cialized NN that does not directly predict the statistic of interest.

Correctness. The work in [56] proves that EBS is an always valid,
near-optimal stopping rule. Briefly, EBS maintains an upper and
lower bound of the estimate that always respects the confidence in-
terval and terminates when the error bound is met given the range of
the data. We estimate the range from the TMAS, which we empiri-
cally show does not affect the confidence intervals in Appendix D.
Furthermore, while video is temporally correlated, we assume all
the video is present, namely the batch setting. As a result, shuffling
the data will result in i.i.d. samples. Control variates are an unbi-
ased estimator for the statistic of interest [28], so standard proofs
of correctness apply to control variates.

Query rewriting using specialized NNs will respect the requested
error bound and confidence level under the assumption of no model
drift (see §3.2).

Time and sample complexity. BLAZEIT must take cδ σ
2

ε2
samples

from a random variable with standard deviation σ (cδ is a constant
that depends on the confidence level and the given video). Denote
the standard deviation of random sampling as σa and from control
variates as σc; the amortized cost of running a specialized NN on
a single frame as ks and of the object detection method as ko; the
total number of frames as F .

Control variates are beneficial when ksF < ko
cδ
ε2

(σ2
a − σ2

c).
Thus, as the error bound decreases or the difference in variances
increases (which typically happens when specialized NNs are more
accurate or when σa is large), control variates give larger speedups.

While σa and σc depend on the query, we empirically show in
§9 that control variates and query rewriting are beneficial.

7. OPTIMIZING LIMIT QUERIES
Overview. In cardinality-limited queries, the user is interested in
finding a limited number of events, (e.g., 10 events of a bus and
five cars, see Figure 2b), typically for manual inspection. Limit
queries are especially helpful for rare events. To answer these
queries, BLAZEIT could perform object detection over every frame
to search for the events. However, if the events occurs infrequently,
naive methods of random sampling or sequential scans of the video
can be prohibitively slow (e.g., at 30 fps, an event that occurs once
every 30 minutes corresponds to a rate of 1.9× 10−5).

Our key intuition is to bias the search towards frames that likely
contain the event. We use specialized NNs for biased sampling,
in a similar vein to techniques from the rare-event simulation lit-
erature [43]. As an example of rare-event simulation, consider the
probability of flipping 80 heads out of 100 coin flips. Using a fair
coin, the probability of encountering this event is astronomically
low (rate of 5.6×10−10), but using a biased coin with p = 0.8 can
be orders of magnitude more efficient (rate of 1.2× 10−4) [43].

Physical operator and selection. BLAZEIT currently supports
limit queries searching for at leastN of an object class (e.g., at least
one bus and at least five cars). In BLAZEIT, we use specialized NNs
to bias which frames to sample:

• If there are no instances of the query in the training set,
BLAZEIT will default to performing the object detection
method over every frame and applying applicable filters as
in prior work [46] (random sampling is also possible).

• If there are examples, BLAZEIT will train a specialized NN
to recognize frames that satisfy the query.

• BLAZEIT rank orders the unseen data by the confidence from
the specialized NN.

• BLAZEIT will perform object detection in the rank order un-
til the requested number of events is found.

For a given query, BLAZEIT trains a specialized NN to recog-
nize frames that satisfy the query. The training data for the special-
ized NN is generated in the same way for aggregation queries (§6).
While we could train a specialized NN as a binary classifier of the
frames that satisfy the predicate and that do not, we have found
that rare queries have extreme class imbalance. Thus, we train the
specialized NN to predict counts instead, which alleviates the class
imbalance issue; this procedure has the additional benefit of allow-
ing the trained specialized NN to be reused for other queries such
as aggregation. For example, suppose the user wants to find frames
with at least one bus and at least five cars. Then, BLAZEIT trains a
single specialized NN to separately count buses and cars. BLAZEIT
use the sum of the probability of the frame having at least one bus
and at least five cars as its signal. BLAZEIT takes the most confi-
dent frames until the requested number of frames is found.

In the case of multiple object classes, BLAZEIT trains a single
NN to predict each object class separately (e.g., instead of jointly
predicting “car” and “bus”, the specialized NN would return a sepa-
rate confidence for “car” and “bus”), as this results in fewer weights
and typically higher performance.

After the results are sorted, the full object detector is applied
until the requested number of events is found or all the frames are
searched. If the query contains the GAP keyword, once an event is
found, the surrounding GAP frames are ignored.

Limit queries with multiple predicates. As with aggregation
queries, a user might issue a limit query with predicates. If there
is sufficient training data in the TMAS, BLAZEIT can execute the
procedure above. If there is not sufficient training data, BLAZEIT
will train a specialized NN to search for the most selective set of
predicates that contains enough data in a similar fashion to gener-
ating an aggregation specialized NN.

Correctness. BLAZEIT performs object detection on all sampled
frames, so it always returns an exact answer. All frames will be
exhaustively searched if there are fewer events than the number
requested, which will also be exact.

Time complexity. Denote K to be the number of events the user
requested, N the total number of matching events, and F the total
number of frames in the video. We denote, for event i, fi as the
frame where the event occurred. Once an event is found, the GAP
frames around the event can be ignored, but this is negligible in
practice so we ignore it in the analysis.

If K > N , then every method must consider every frame in the
video, i.e., F frames. From here on, we assume K ≤ N .

For sequential scans, fK frames must be examined.
For random sampling, consider the number of frames to find a

single event. In expectation, random sampling will consider F
N

frames. Under the assumption that K � N � F , then random
sampling will consider approximately K·F

N
frames.

While using specialized NNs to bias the search does not guaran-
tee faster runtime, we show in §9 that it empirically can reduce the
number of frames considered.

8. IMPLEMENTATION
We implemented our prototype of BLAZEIT in Python 3.5 for the

control plane (the deep learning frameworks we use for object de-
tection require Python) and, for efficiency purposes, we implement
the non-NN filters in C++. We use PyTorch v1.0 for the training
and evaluation of specialized NNs. For object detection, we use
FGFA [73] using MXNet v1.2 and Mask R-CNN [32] using the
Detectron framework [26] in Caffe v0.8. We modify the imple-
mentations to accept arbitrary parts of video. For FGFA, we use
the provided pre-trained weights and for Mask R-CNN, we use the
pretrained X-152-32x8d-FPN-IN5k weights. We ingest video
via OpenCV.

BLAZEIT uses a Fluent DSL written in Python to specify
FRAMEQL queries. The cost of storing and materializing the pro-
cessed data is negligible, so we use Pandas for processing tuples.

Video ingestion. BLAZEIT loads the video and resizes the frames
to the appropriate size for each NN (65×65 for specialized NNs,
short side of 600 pixels for object detection methods), and normal-
izes the pixel values appropriately.

Specialized NN training. We train the specialized NNs using
PyTorch v1.0. Video are ingested and resized to 65×65 pixels and
normalized using standard ImageNet normalization [33]. Standard
cross-entropy loss is used for training, with a batch size of 16. We
use SGD with a momentum of 0.9. Our specialized NNs use a “tiny
ResNet” architecture, a modified version of the standard ResNet
architecture [33], which has 10 layers and a starting filter size of
16, for all query types. As this work focuses on exploratory queries,
we choose tiny ResNet as a good default and show that it performs
better than or on par with the NNs used in [46].

Identifying objects across frames. Our default for computing
trackid uses motion IOU [73]. Given the set of objects in two
consecutive frames, we compute the pairwise IOU of each object
in the two frames. We use a cutoff of 0.7 to call an object the same
across consecutive frames.

9. EVALUATION
We evaluated BLAZEIT on a variety of aggregation and limit

FRAMEQL queries on real-world video streams. We show that:
1. BLAZEIT achieves up to a 14× speedup over AQP on aggre-

gation queries (§9.2).
2. BLAZEIT achieves up to an 83× speedup compared to the

next best method for video limit queries (§9.3).

9.1 Experimental Setup
Evaluation queries and videos. We evaluated BLAZEIT on
six videos shown in Table 4, which were scraped from YouTube.
taipei, night-street, amsterdam, and archie are
widely used in video analytics systems [9,37,40,46,70] and we col-
lected two other streams. We only considered times where the ob-
ject detection method can perform well (due to lighting conditions),
which resulted in 6-11 hours of video per day. These datasets vary
in object class (car, bus, boat), occupancy (12% to 90%), and av-
erage duration of object appearances (1.4s to 10.7s). For each we-
bcam, we use three days of video: one day for training labels, one
day for threshold computation, and one day for testing, as in [46].

Table 4: Video streams and object labels queried in our evaluation. We show the data from the test set, as the data from the test set will
influence the runtime of the baselines and BLAZEIT.

Video name Object Occupancy Avg. duration
of object in scene

Distinct
count Resol. FPS # Eval

frames Length (hrs) Detection
method Thresh

taipei bus 11.9% 2.82s 1749 720p 30 1188k 33 FGFA 0.2
car 64.4% 1.43s 32367

night-street car 28.1% 3.94s 3191 720p 30 973k 27 Mask 0.8
rialto boat 89.9% 10.7s 5969 720p 30 866k 24 Mask 0.8
grand-canal boat 57.7% 9.50s 1849 1080p 60 1300k 18 Mask 0.8
amsterdam car 44.7% 7.88s 3096 720p 30 1188k 33 Mask 0.8
archie car 51.8% 0.30s 90088 2160p 30 1188k 33 Mask 0.8

We evaluate on queries similar to Figure 2, in which the class
and video were changed.

Target object detection methods. For each video, we used
a pretrained object detection method as the target object detec-
tion method, as pretrained NNs do not require collecting additional
data or training: collecting data and training is difficult for non-
experts. We selected between Mask R-CNN [32] pretrained on
MS-COCO [53], FGFA [73] pretrained on ImageNet-Vid [65], and
YOLOv2 [62] pretrained on MS-COCO.

We labeled part of each video using Mask R-CNN [32],
FGFA [73], and YOLOv2 [62], and manually selected the most ac-
curate method for each video. Mask R-CNN and FGFA are signifi-
cantly more accurate than YOLOv2, so we did not select YOLOv2
for any video. The chosen object detection method per video was
used for all queries for that video.

In timing the naive baseline, we only included the GPU compute
time and exclude the time to process the video and convert tuples to
FRAMEQL format, as object detection is the overwhelming com-
putational cost.

Data preprocessing. The literature reports that state-of-the-art
object detection methods still suffer in performance for small ob-
jects [32, 73]. Thus, we only considered regions where objects are
large relative to the size of the frame (these regions are video depen-
dent). Object detectors will return a set of boxes and confidences
values. We manually selected confidence thresholds for each video
and object class for when to consider an object present (Table 4).

Evaluation metrics. We computed all accuracy metrics with re-
spect to the object detection method, i.e., we treated the object de-
tection method as ground truth. For aggregation queries, we report
the absolute error. For limit queries, we guarantee only true posi-
tives are returned, thus we only report throughput.

We have found that modern object detection methods can be ac-
curate at the frame level. Thus, we considered accuracy at the frame
level, in contrast to to the one-second binning that is used in [46] to
mitigate label flickering for NOSCOPE.

We measured throughput by timing the complete end-to-end sys-
tem excluding the time taken to decode video, as is standard [46,
55]. We assume the TMAS is computed offline once, so we ex-
cluded the time to generate the TMAS. Unlike in [46], we also
show runtime numbers when the training time of the specialized
NN is included. We include this time as BLAZEIT focuses on
exploratory queries, whereas NOSCOPE focuses on long-running
streams of data. We additionally show numbers where the training
time is excluded, which could be achieved if the specialized NNs
were indexed ahead of time.

Hardware Environment. We performed our experiments on a
server with a single NVIDIA Tesla P100 GPU and two Intel Xeon
E5-2690v4 CPUs (56 threads). The system has 504 GB of RAM.

9.1.1 Binary Oracle Configuration
Many prior visual analytics systems answer binary classification

queries, including NOSCOPE, TAHOMA, and probablistic predi-
cates [37,46,55] which are the closest systems to BLAZEIT. These
systems cannot directly answer queries in the form of aggregate or
limit queries for multiple instances of an object or objects.

As binary classification is not directly applicable to the tasks
we consider, where relevant, we compared against a binary oracle,
namely a method that returns (on a frame-by-frame basis) whether
or not an object class is present in the scene. We assume the oracle
is free to query. Thus, this oracle is strictly more powerful—both in
terms of accuracy and speed—than existing systems. We describe
how the binary oracle can be used to answer each type of query.

Aggregates. Binary oracles cannot distinguish between one and
several objects, so object detection must be performed on every
frame with an object to identify the individual objects. Thus, count-
ing cars in taipei would require performing object detection on
64.4% of the frames, i.e., the occupancy rate.

Cardinality-limited queries. As above, a binary oracle can be
used to filter frames that do not contain the objects of interest. For
example, if the query were searching for at least one bus and at
least five cars in taipei, a binary oracle can be used to remove
frames that do not have a bus and a car. Object detection will then
be performed on the remaining frames until the requested number
of events is found.

9.2 Aggregate Queries
We evaluated BLAZEIT on six aggregate queries across six videos.

The queries are similar to the query in Figure 2a, with the video and
object class changed. We ran five variants of each query:
• Naive: we performed object detection on every frame.

• Binary oracle: we performed object detection on every frame
with the object class present.

• Naive AQP: we randomly sampled from the video.

• BLAZEIT: we used specialized NNs and control variates for
efficient sampling.

• BLAZEIT (no train): we excluded the training time.
There are two qualitatively different execution modes: 1) where

BLAZEIT rewrites the query using a specialized NN and 2) where
BLAZEIT samples using specialized NNs as control variates (§6).
We analyzed these cases separately.

Query rewriting via specialized NNs. We evaluated the runtime
and accuracy of specialized NNs when the query can be rewritten
by using a specialized NN. We ran each query with a target error
rate of 0.1 and a confidence level of 95%. We show the average
of three runs. Query rewriting was unable to achieve this accuracy
for archie, so we excluded it. However, we show below that
specialized NNs can be used as a control variate even in this case.

102

103

104

105

106

Ru
nt

im
e

(s
) 1.0x 1.6x

384.6x
2369x 5741x

a) taipei
1.0x

3.6x

493.1x
3295x 8331x

b) night-street

102

103

104

105

106

Ru
nt

im
e

(s
) 1.0x 1.1x

225.8x

3179x
8588x

c) rialto
1.0x 1.7x

615.0x
3286x 7707x

d) grand-canal

Naiv
e

Bina
ry

Orac
le AQP

(Naiv
e)

Blaz
eIt

Blaz
eIt

(no
 tra

in)

102

103

104

105

106

Ru
nt

im
e

(s
) 1.0x 2.2x

588.7x
3279x 8421x

e) amsterdam

Figure 6: End-to-end runtime of aggregate queries where
BLAZEIT rewrote the query with a specialized network, measured
in seconds (log scale). BLAZEIT outperforms all baselines. All
queries targeted ε = 0.1.

Table 5: Average error of 3 runs of query-rewriting using a spe-
cialized NN for counting. These videos stayed within ε = 0.1.

Video Name Error
taipei 0.043
night-street 0.022
rialto -0.031
grand-canal 0.081
amsterdam 0.050

Table 6: Estimated and true counts for specialized NNs run on two
different days of video. In parentheses are the day of video.

Video Pred (1) Actual (1) Pred (2) Actual (2)
taipei 0.86 0.85 1.21 1.17
night-street 0.76 0.84 0.40 0.38
rialto 2.25 2.15 2.34 2.37
grand-canal 0.95 0.99 0.87 0.81

As shown in Figure 6, BLAZEIT can outperform naive AQP by
up to 14× even when including the training time and time to com-
pute thresholds, which the binary oracle does not include. The
binary oracle baseline does not perform well when the video has
many objects of interest (e.g., rialto).

While specialized NNs do not provide error guarantees, we show
that the absolute error stays within the 0.1 for the given videos in
Table 5. This shows that specialized NNs can be used for query
rewriting while respecting the user’s error bounds.

Sampling and control variates. We evaluated the runtime and ac-
curacy of sampling with specialized NNs as a control variate. Be-
cause of the high computational cost of running object detection,
we ran the object detection method once and recorded the results.
The run times in this section are estimated from the number of ob-
ject detection invocations.

We targeted error rates of 0.01, 0.02, 0.03, 0.04, and 0.05 with a
confidence level of 95%. We averaged the number of samples for
each error level over 100 runs.

104

105

Sa
m

pl
es

a) taipei
Naive
Control
variate

b) night-street

104

105

Sa
m

pl
es

c) rialto d) grand-canal

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Error (absolute)

104

105

Sa
m

pl
es

e) amsterdam

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Error (absolute)

f) archie

Figure 7: Sample complexity of random sampling and BLAZEIT
with control variates. Control variates via specialized NNs consis-
tently outperforms standard random sampling. Note the y-axis is
on a log scale.

As shown in Figure 7, using specialized NNs as a control variate
can deliver up to a 1.7× reduction in sample complexity. As pre-
dicted by theory, the reduction in variance depends on the corre-
lation between the specialized NNs and the object detection meth-
ods. Specifically, as the correlation coefficient increases, the sam-
ple complexity decreases.

Sampling with predicates. We evaluated the runtime of BLAZEIT
on aggregation queries with predicates. We evaluated on one query
per video and counted the number of objects with a given color
and at least a given size; full query details are give in an extended
version of this paper [44]. We targeted an error rate of 0.001.

As shown in Figure 8, using specialized NNs as control variates
can deliver up to a 1.5× speedup compared to naive AQP. While the
absolute runtimes vary depending on the difficulty of the query, the
relative gain of BLAZEIT’s control variates only depends on the re-
duction in variance. Finally, we note the gains are lower compared
to queries with predicates as there is less training data.

Specialized NNs do not learn the average. Specialized NNs may
perform well by learning the average number of cars. To demon-
strate that they do not, we swapped the day of video for choosing
thresholds and testing data. We show the true counts for each day
and the average of 3 runs in Table 6. We see that the specialized
NNs return different results for each day. This shows that the spe-
cialized NNs do not learn the average and return meaningful results.

9.3 Cardinality-limited Queries
We evaluated BLAZEIT on limit queries, in which frames of in-

terest are returned to the user, up to the requested number of frames.
The queries are similar to the query in Figure 2b. We show in Ta-
ble 7 the query details and the number of instances of each query.
If the user queries more than the maximum number of instances,
BLAZEIT must inspect every frame. Thus, we chose queries with
at least 10 instances of the query.

105

106
Ru

nt
im

e
(s

)

1.0x
1.6x

7.0x 9.0x 9.0x

a) taipei

1.0x

3.6x 3.5x 4.6x 4.6x

b) night-street

105

106

Ru
nt

im
e

(s
)

1.0x 1.1x 1.6x 2.2x 2.2x

c) rialto
1.0x

1.7x

5.2x 7.4x 7.4x

d) grand-canal

Naiv
e

Bina
ry

Orac
le AQP

(Naiv
e)

Blaz
eIt

Blaz
eIt

(no
 tra

in)

105

106

Ru
nt

im
e

(s
)

1.0x
2.2x 2.7x

4.1x 4.1x

e) amsterdam

Naiv
e

Bina
ry

Orac
le AQP

(Naiv
e)

Blaz
eIt

Blaz
eIt

(no
 tra

in)

1.0x
1.9x

4.8x 6.2x 6.3x

f) archie

Figure 8: Runtime of BLAZEIT and baselines for aggregation
queries with predicates. Note the y-axis is on a log scale. As shown,
BLAZEIT consistently outperforms naive random sampling.

Table 7: Query details and number of instances. We selected rare
events with at least 10 instances.

Video name Object Number Instances
taipei car 6 70
night-street car 5 29
rialto boat 7 51
grand-canal boat 5 23
amsterdam car 4 86
archie car 4 102

BLAZEIT will only return true positives for limit queries (§7),
thus we only report the runtime. Additionally, if we suppose that
the videos are indexed with the output of the specialized NNs, we
can simply query the frames using information from the index. This
scenario might occur when the user executed an aggregate query as
above. Thus, we additionally report sample complexity.

We ran the following variants:
• Naive: we performed object detection sequentially until the

requested number of frames is found.

• Binary oracle: we performed object detection over the frames
containing the object class(es) of interest until the requested
number of frames is found.

• Sampling: we randomly sampled the video until the requested
number of events is found.

• BLAZEIT: we use specialized NNs as a proxy signal to rank
the frames (§7).

• BLAZEIT (indexed): we assume the specialized NN has been
trained and run over the remaining data, as might happen if a
user runs several queries about some class.

Single object class. Figure 9 shows that BLAZEIT can achieve
over a 1000× speedup compared to baselines. We see that the base-
lines do poorly in finding rare objects, where BLAZEIT’s special-
ized NNs can serve as a high-fidelity signal.

102

103

104

105

Ru
nt

im
e

(s
) 1.0x 1.9x

21.9x

233.4x
1022x

a) taipei

1.0x 1.3x
0.2x

8.7x 9.1x

b) night-street

102

103

104

105

Ru
nt

im
e

(s
) 1.0x 1.1x

43.4x
182.4x 232.3x

c) rialto
1.0x 1.5x

5.5x
14.8x 15.3x

d) grand-canal

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

102

103

104

105

Ru
nt

im
e

(s
) 1.0x

3.9x

73.4x
441.2x 779.8x

e) amsterdam

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

1.0x 1.9x

14.8x

255.6x
1229x

f) archie

Figure 9: End-to-end runtime of baselines and BLAZEIT on limit
queries; BLAZEIT outperforms all baselines. The y-axis is log-
scaled. All queries looked for 10 events.

1 2 3 4 5 6
Number of objects

102

104

Sa
m

pl
es

Naive Binary Oracle Sampling BlazeIt

Figure 10: Sample complexity of baselines and BLAZEIT when
searching for at leastN cars in taipei; BLAZEIT outperforms all
baselines. Note the y-axis is on a log-scale. All queries searched
for 10 events.

We also varied the number of cars in taipei to see if BLAZEIT
could also search for common objects. As shown in Figure 10,
the sample complexity increases as the number of cars increases
for both the naive method and the binary oracle. However, for
up to 5 cars, BLAZEIT’s sample complexity remains nearly con-
stant, which demonstrates the efficacy of biased sampling. While
BLAZEIT shows degraded performance with 6 cars, there are only
70 such instances, and is thus significantly harder to find.

Multiple object classes. We tested BLAZEIT on multiple object
classes by searching for at least one bus and at least five cars in
taipei. There are 63 instances in the test set.

As shown in Figure 11, BLAZEIT outperforms the naive baseline
by up to 966×. Searching for multiple object classes is favorable
for the binary oracle, as it becomes more selective. Nonetheless,
BLAZEIT significantly outperforms the binary oracle, giving up to
a 81× performance increase.

Additionally, we show the sample complexity as a function of the
LIMIT in Figure 12 of BLAZEIT and the baselines, for taipei.
We see that BLAZEIT can be up to orders of magnitude more sam-
ple efficient over both the naive baseline and the binary oracle.

Naive Binary
Oracle

Sampling BlazeIt BlazeIt
(indexed)

102

103

104

105

Ru
nt

im
e

(s
) 1.0x

12.0x 12.2x

293.0x
966.7x

Figure 11: End-to-end runtime of baselines and BLAZEIT on find-
ing at least one bus and at least five cars in taipei; BLAZEIT
outperforms all baselines. Note the y-axis is on a log scale.

0 5 10 15 20
Requested events

101

103

105

Sa
m

pl
es

Naive
Binary
Oracle
Sampling
BlazeIt

Figure 12: Sample complexity of BLAZEIT and baselines when
searching for at least one bus and at least five cars in taipei;
BLAZEIT outperforms all baselines. The x-axis is the number of
requested frames. Note the y-axis is on a log scale.

Limit queries with predicates. We evaluated BLAZEIT on limit
queries with predicates by searching for objects with a specified
color and at least a specified size. We present the full query details
and statistics in an extended version of this paper [44].

As shown in Figure 13, BLAZEIT outperforms all baselines by
up to 300×, even when including the proxy model training time.
BLAZEIT especially outperforms baselines on queries that have
few matches, as random sampling and NOSCOPE will perform
poorly in these settings.

9.4 Specialized Neural Networks
Effect of NN type. In this work, we used a tiny ResNet (referred
to as TRN10) as the default specialized architecture. ResNets are
an extremely popular architecture [13, 14]. To test our hypothesis
that TRN10 is a good default, we compared TRN10 to a representa-
tive NOSCOPE NN [46], parameterized by 32 base filters, 32 dense
neurons, and 4 layers.

We used TRN10 and the NOSCOPE NN on limit queries for each
of the videos and computed the number of samples required to find
the requested number of events in Table 7. As shown in Figure 14,
TRN10 requires significantly fewer samples compared to the NO-
SCOPE NN on all videos.

We additionally used TRN10 and the NOSCOPE NN for the ag-
gregation tasks for each video and computed the variance of the
control variate estimator (the variance of the estimator is directly
related to the number of samples; lower is better). As shown in
Figure 15, TRN10 typically matches or beats the NOSCOPE NN,
except for night-street.

Effect of training data. To see the effect of the amount of training
data on aggregate query performance, we plotted the error of the
specialized NNs on the aggregation queries used in Section 9.2.
We show results in Figure 16. As shown, the error tends to decrease
until around 150,000 training examples and levels off or increases,
potentially due to overfitting.

Performance benchmarks. We plotted the performance of tiny
ResNets as the depth, width, and resolution of the network and

102

104

106

Ru
nt

im
e

(s
) 1.0x

11.7x
3.1x

1107x
3985x

a) taipei
1.0x

4.5x 5.8x

1953x

213707x

b) night-street

102

104

106

Ru
nt

im
e

(s
) 1.0x 1.1x

16.6x

1079x

34198x

c) rialto
1.0x 1.8x 2.9x

1707x

66875x

d) grand-canal

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

102

104

106

Ru
nt

im
e

(s
) 1.0x 2.5x

0.7x

716.1x 2102x

e) amsterdam

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

1.0x 2.7x 7.0x

1090x
14195x

f) archie

Figure 13: Runtime of BLAZEIT and baselines on limit queries
with predicates. BLAZEIT’s outperforms all baselines, even when
including the training time of the proxy model. BLAZEIT espe-
cially outperforms baselines when the selectivity is high: random
sampling will perform especially poorly on rare events.

nig
ht-

str
ee

t

ve
nic

e-r
ialt

o

gra
nd

-ca
na

l

am
ste

rda
m

arc
hie

-da
y

tai
pe

i

103

105

Fr
am

es

TRN10 NoScope

Figure 14: Number of samples to find 10 of the requested objects
for each query, using TRN10 or a representative NOSCOPE NN. As
shown, TRN10 significantly outperforms the NOSCOPE NN on all
videos. The y-axis is on a log-scale. Average of 3 runs.

inputs varied. As shown in Figure 17, the throughput of the tiny
ResNets decreases linearly with depth and width. The throughput
generally decreases with the square of the resolution, but reduces
further if the maximum batch size that the GPU can fit decreases.

10. RELATED WORK
BLAZEIT builds on research in data management for multimedia

and video, and on recent advances in computer vision. We outline
some relevant parts of the literature below.

AQP. In AQP systems, the result of a query is returned significantly
faster by subsampling the data [22]. Typically, the user specifies
an error bound [5], or the error bound is refined over time [34].
Prior work has leveraged various sampling methods [4, 11], his-
tograms [3, 15, 27, 60], and sketches [10, 35, 41].

The key different in BLAZEIT is difference in cost of tuple ma-
terialization: materializing a tuple for video analytics (i.e., execut-
ing object detection) is orders of magnitude more expensive than
in standard databases. To address this challenge, we introduce a
new form of variance reduction in the form of control variates [28]
via specialized NNs. This form of variance reduction, and others

nig
ht-

str
ee

t

ve
nic

e-r
ialt

o

gra
nd

-ca
na

l

am
ste

rda
m

arc
hie

-da
y

tai
pe

i
0.0

0.5

1.0

1.5

2.0
Va

ria
nc

e TRN10 NoScope

Figure 15: Variance of the control variates estimator when using
TRN10 or a representative NOSCOPE NN (lower is better). As
shown, TRN10 typically matches or beats the NOSCOPE NN, ex-
cept for night-street.

50 100 150 200
Data (thousands)

0.00

0.05

0.10

0.15

Ab
s.

er
ro

r

amsterdam
grand-canal

taipei
rialto

night-street

Figure 16: Effect of the amount of data on the error of specialized
NNs on the aggregation queries used in Section 9.2. As shown, the
error tends to decrease until 150k training examples.

involving auxiliary variables, does not apply in a traditional rela-
tional database due to the cost imbalance.

Visual data management. Visual data management has aimed
to organize and query visual data, starting from systems such as
Chabot [58] and QBIC [21]. These systems were followed by a
range of “multimedia” database for storing [8,51], querying [7, 49,
59], and managing [25, 39, 71] video data. The literature also con-
tains many proposals for query languages for visual data [17, 38,
54]; we discuss how FRAMEQL differs from these languages in an
extended version of this paper [44].

Many of these systems and languages use classic computer vi-
sion techniques such as low-level image features (e.g., color) and
rely on textual annotations for semantic queries. However, recent
advances in computer vision allow the automatic population of se-
mantic data and thus we believe it is critical to reinvestigate these
systems. In this work, we explicitly choose to extend SQL in
FRAMEQL and focus on how these fields can be automatically pop-
ulated rather than the syntax.

Modern video analytics. Systems builders have created video an-
alytics systems, e.g., NOSCOPE [46], a highly tuned pipeline for
binary detection: it returns the presence or absence of a partic-
ular object class in video. Other systems, e.g., FOCUS [37] and
TAHOMA [6], also optimize binary detection. However, these sys-
tems are inflexible and cannot adapt to user’s queries. Additionally,
as NOSCOPE does not focus on the exploratory setting, it does not
optimize the training time of specialized NNs. In BLAZEIT, we ex-
tend specialization and present novel optimizations for aggregation
and limit queries, which these systems do not support.

Other contemporary work use filters with a false negative rate
(called probabilistic predicates) that are automatically learned from
a hold-out set [55]. These could be incorporated into BLAZEIT for
selection queries.

Other systems aim to reduce latency of live queries (e.g.,
VideoStorm [72]) or increase the throughput of batch analytics
queries (e.g., SCANNER [61]) that are pre-defined as a computation

10 20 30
Depth

10000
20000
30000

Th
ro

ug
hp

ut

25 50
Width

100 150
Resolution

Figure 17: Effect of the width, depth, and input resolution on the
throughput of the tiny ResNet architecture. The throughput is pro-
portional to the inverse of the width and the depth, and generally
proportional to the inverse of the square of the input resolution.

graph. As the computation is specified as a black-box, these sys-
tems do not have access to the semantics of the computation to per-
form certain optimizations, such as in BLAZEIT. In BLAZEIT, we
introduce FRAMEQL and an optimizer that can infer optimizations
from the given query. Additionally, BLAZEIT could be integrated
with VideoStorm for live analytics or SCANNER for scale-out.

We presented a preliminary version of BLAZEIT as a non-archival
demonstration [45].

Speeding up deep networks. We briefly discuss two of the many
forms of improving deep network efficiency.

First, a large body of work changes the NN architecture or weights
for improved inference efficiency, that preserve the full generality
of these NNs. Model compression uses a variety of techniques from
pruning [30] to compressing [12] weights from the original NN,
which can be amenable to hardware acceleration [29]. Model dis-
tillation uses a large NN to train a smaller NN [36]. These methods
are largely orthogonal to BLAZEIT, and reducing the cost of object
detection would also improve BLAZEIT’s runtime.

Second, specialization [46,67] aims to improve inference speeds
by training a small NN to mimic a larger NN on a reduced task.
Specialization has typically been applied in specific pipelines, e.g.,
for binary detection. In BLAZEIT, we extend specialization to
counting and multi-class classification. Further, we show to how
use specialized NNs as control variates and for limit queries.

11. CONCLUSIONS
Querying video for semantic information has become possible

with advances in computer vision. However, these NNs run up to
10× slower than real-time and requires complex programming with
low-level libraries to deploy. In response, we present BLAZEIT,
a optimizing video analytics system with a declarative language,
FRAMEQL. We introduce two novel optimizations for aggregation
and limit queries, which are not supported by prior work. These
techniques can run orders of magnitude faster than baselines while
retaining accuracy guarantees, despite potentially inaccurate spe-
cialized NNs. These results suggest that new classes of queries can
be answered over large video datasets with orders of magnitude
lower computational cost.

Acknowledgements
This research was supported in part by affiliate members and other supporters of the
Stanford DAWN project—Ant Financial, Facebook, Google, Infosys, Intel, NEC, SAP,
Teradata, and VMware—as well as Toyota Research Institute, Keysight Technologies,
Amazon Web Services, Cisco, and the NSF under CAREER grant CNS-1651570. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

12. REFERENCES

[1] Cornell lab bird cams.
http://cams.allaboutbirds.org/.

[2] Cctv: Too many cameras useless, warns surveillance
watchdog tony porter, 2015.

[3] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A fast
decision support systems using approximate query answers.
In PVLDB, pages 754–757, 1999.

[4] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,
S. Madden, B. Mozafari, and I. Stoica. Knowing when
you’re wrong: building fast and reliable approximate query
processing systems. In SIGMOD, pages 481–492. ACM,
2014.

[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In EuroSys,
pages 29–42. ACM, 2013.

[6] M. R. Anderson, M. Cafarella, T. F. Wenisch, and G. Ros.
Predicate optimization for a visual analytics database. ICDE,
2019.

[7] W. Aref, M. Hammad, A. C. Catlin, I. Ilyas, T. Ghanem,
A. Elmagarmid, and M. Marzouk. Video query processing in
the vdbms testbed for video database research. In
International Workshop on Multimedia Databases, pages
25–32. ACM, 2003.

[8] F. Arman, A. Hsu, and M.-Y. Chiu. Image processing on
compressed data for large video databases. In International
Conference on Multimedia, pages 267–272. ACM, 1993.

[9] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. Andersen,
M. Kaminsky, and S. Dulloor. Scaling video analytics on
constrained edge nodes. SysML, 2019.

[10] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In ICALP, pages 693–703.
Springer, 2002.

[11] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified
sampling for approximate query processing. TODS, 2007.

[12] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen.
Compressing neural networks with the hashing trick. In
ICML, pages 2285–2294, 2015.

[13] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao,
J. Zhang, P. Bailis, K. Olukotun, C. Re, and M. Zaharia.
Analysis of dawnbench, a time-to-accuracy machine learning
performance benchmark. arXiv preprint arXiv:1806.01427,
2018.

[14] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang,
L. Nardi, P. Bailis, K. Olukotun, C. Ré, and M. Zaharia.
Dawnbench: An end-to-end deep learning benchmark and
competition. Training, 100(101):102, 2017.

[15] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space-and time-efficient deterministic algorithms for biased
quantiles over data streams. In SIGMOD, pages 263–272.
ACM, 2006.

[16] J. De Cea and E. Fernández. Transit assignment for
congested public transport systems: an equilibrium model.
Transportation science, 27(2):133–147, 1993.

[17] U. Demir, M. Koyuncu, A. Yazici, T. Yilmaz, and M. Sert.
Flexible content extraction and querying for videos. In
FQAS, pages 460–471. Springer, 2011.

[18] M. E. Dönderler, E. Şaykol, U. Arslan, Ö. Ulusoy, and
U. Güdükbay. Bilvideo: Design and implementation of a
video database management system. Multimedia Tools and

Applications, 2005.
[19] B. Efron and R. J. Tibshirani. An introduction to the

bootstrap. CRC press, 1994.
[20] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively trained
part-based models. TPAMI, 2010.

[21] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, et al.
Query by image and video content: The qbic system.
computer, 28(9):23–32, 1995.

[22] M. N. Garofalakis and P. B. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[23] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In
CVPR. IEEE, 2012.

[24] S. Geisser. Predictive inference. Routledge, 2017.
[25] S. Gibbs, C. Breiteneder, and D. Tsichritzis. Audio/video

databases: An object-oriented approach. In ICDE. IEEE,
1993.

[26] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and
K. He. Detectron. https:
//github.com/facebookresearch/detectron,
2018.

[27] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD, volume 30,
pages 58–66. ACM, 2001.

[28] J. M. Hammersley and D. C. Handscomb. General principles
of the monte carlo method. In Monte Carlo Methods, pages
50–75. Springer, 1964.

[29] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. Eie: efficient inference engine on
compressed deep neural network. In ISCA, pages 243–254.
IEEE, 2016.

[30] S. Han, H. Mao, and W. J. Dally. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[31] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy. Mcdnn: An approximation-based
execution framework for deep stream processing under
resource constraints. In MobiSys, pages 123–136. ACM,
2016.

[32] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In ICCV, pages 2980–2988. IEEE, 2017.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[34] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Acm Sigmod Record, volume 26, pages
171–182. ACM, 1997.

[35] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. External memory algorithms,
50:107–118, 1998.

[36] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[37] K. Hsieh, G. Ananthanarayanan, P. Bodik, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu. Focus: Querying
large video datasets with low latency and low cost. OSDI,
2018.

[38] E. Hwang and V. Subrahmanian. Querying video libraries.
Journal of Visual Communication and Image Representation,
1996.

[39] R. Jain and A. Hampapur. Metadata in video databases. ACM
Sigmod Record, 23(4):27–33, 1994.

[40] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and
I. Stoica. Chameleon: scalable adaptation of video analytics.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 253–266.
ACM, 2018.

[41] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically
maintaining frequent items over a data stream. In CIKM,
pages 287–294. ACM, 2003.

[42] R. Johnson and T. Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In NIPS, pages
315–323, 2013.

[43] S. Juneja and P. Shahabuddin. Rare-event simulation
techniques: an introduction and recent advances. Handbooks
in operations research and management science,
13:291–350, 2006.

[44] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Optimizing
declarative aggregation and limit queries for neural
network-based video analytics. arXiv preprint
arXiv:arXiv:1805.01046, 2019.

[45] D. Kang, P. Bailis, and M. Zaharia. Challenges and
opportunities in dnn-based video analytics: A demonstration
of the blazeit video query engine. CIDR, 2019.

[46] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
Noscope: optimizing neural network queries over video at
scale. PVLDB, 10(11):1586–1597, 2017.

[47] T. C. Kuo and A. L. Chen. A content-based query language
for video databases. In ICMCS, pages 209–214. IEEE, 1996.

[48] T. C. Kuo and A. L. Chen. Content-based query processing
for video databases. IJDTA, 2(1):1–13, 2000.

[49] M. La Cascia and E. Ardizzone. Jacob: Just a content-based
query system for video databases. In ICASSP. IEEE, 1996.

[50] T.-L. Le, M. Thonnat, A. Boucher, and F. Brémond. A query
language combining object features and semantic events for
surveillance video retrieval. In MMM. Springer, 2008.

[51] J. Lee, J. Oh, and S. Hwang. Strg-index: Spatio-temporal
region graph indexing for large video databases. In
SIGMOD, pages 718–729. ACM, 2005.

[52] J. Z. Li, M. T. Ozsu, D. Szafron, and V. Oria. Moql: A
multimedia object query language. In MIPR, pages 19–28,
1997.

[53] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco:
Common objects in context. In ECCV, pages 740–755.
Springer, 2014.

[54] C. Lu, M. Liu, and Z. Wu. Svql: A sql extended query
language for video databases. IJDTA, 2015.

[55] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri.
Accelerating machine learning inference with probabilistic
predicates. In SIGMOD, pages 1493–1508. ACM, 2018.

[56] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical

bernstein stopping. In Proceedings of the 25th international
conference on Machine learning, pages 672–679. ACM,
2008.

[57] H. Nyquist. Certain topics in telegraph transmission theory.
Transactions of the American Institute of Electrical
Engineers, 47(2):617–644, 1928.

[58] V. E. Ogle and M. Stonebraker. Chabot: Retrieval from a
relational database of images. Computer, 28(9):40–48, 1995.

[59] J. Oh and K. A. Hua. Efficient and cost-effective techniques
for browsing and indexing large video databases. In ACM
SIGMOD Record, volume 29, pages 415–426. ACM, 2000.

[60] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. SIGMOD, 1984.

[61] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian.
Scanner: Efficient video analysis at scale (to appear). 2018.

[62] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.
arXiv preprint, 2017.

[63] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015.

[64] C. P. Robert. Monte carlo methods. Wiley Online Library,
2004.

[65] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252,
2015.

[66] A. W. Senior, L. Brown, A. Hampapur, C.-F. Shu, Y. Zhai,
R. S. Feris, Y.-L. Tian, S. Borger, and C. Carlson. Video
analytics for retail. In AVSS. IEEE, 2007.

[67] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast
video classification via adaptive cascading of deep models.
arXiv preprint, 2016.

[68] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast
video classification via adaptive cascading of deep models.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3646–3654, 2017.

[69] X. Sun, L. Muñoz, and R. Horowitz. Highway traffic state
estimation using improved mixture kalman filters for
effective ramp metering control. In IEEE CDC, volume 6,
pages 6333–6338. IEEE, 2003.

[70] T. Xu, L. M. Botelho, and F. X. Lin. Vstore: A data store for
analytics on large videos. In Proceedings of the Fourteenth
EuroSys Conference 2019, page 16. ACM, 2019.

[71] A. Yoshitaka and T. Ichikawa. A survey on content-based
retrieval for multimedia databases. TKDE.

[72] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman. Live video analytics at scale
with approximation and delay-tolerance. In NSDI, volume 9,
page 1, 2017.

[73] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-guided
feature aggregation for video object detection. arXiv preprint
arXiv:1703.10025, 2017.

SELECT COUNT
(DISTINCT trackid)

FROM taipei
WHERE class = 'car'

(a) Count distinct cars.

SELECT COUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1
CONFIDENCE 95%

(b) Example of error rate.

SELECT timestamp
FROM taipei
WHERE class = 'car'
FNR WITHIN 0.01
FPR WITHIN 0.01

(c) Replicating NOSCOPE.

SELECT *
FROM taipei
WHERE class = 'car'

AND classify(content)
= 'sedan'

(d) UDF to classify cars.

Figure 19: Further examples of FRAMEQL.

LB← 0
UB←∞
t← 1
k ← 0
while LB + ε ¡ UB - ε do

t← t+ 1
if t > floor(βk) then

k ← k + 1
α← floor(βk)/floor(βk−1)
x← −α log dk/3

end
ct ← σ̄t

√
2x/t+ 3Rx/t

LB← max(LB, |X̄t| − ct)
UB← min(UB, |X̄t|+ ct)

end
Algorithm 2: Full EBGStop algorithm that uses geometric
sampling.

taipei night-street

3 × 105

Object detection
Conversion

Figure 18: Time of object detection and conversion to FRAMEQL
tuples, when processing the entire video. Zoomed in and log-scaled
for visibility.

APPENDIX
A. FRAMEQL

A.1 Populating FRAMEQL
In this work, we focus on the batch analytics setting (as opposed

to streaming analytics) so we assume the all the video is available
for processing. To our knowledge, the majority of object detec-
tion and entity resolution methods are deterministic. Thus, once
the object detection and entity resolution methods are fixed, the
FRAMEQL tuples do not change.

We have empirically found that, even for busy scenes, a fully
populated FRAMEQL table has around 100k rows per hour of video.
We show the breakdown of time for detection and processing the
data to FRAMEQL tuples for taipei and night-street in
Figure 18 (taipei is the busiest video and thus takes the longest
time to convert the output of object detection to FRAMEQL tuples).

As converting the output of object detection to FRAMEQL tuples is
a tiny fraction of total time, we ignore the transformation time.

A.2 Other Visual Query Languages
There are many other visual query languages in the literature,

including SVQL [54], CVQL [48], BVQL [18], and SRQL [50].
FRAMEQL shares similarities with many of these query languages,
but has several key differences. First, the majority of prior visual
query languages either used low-level features, assumed the seman-
tic data was provided, or used classical computer vision methods to
extract semantic data. Second, many of these query languages fo-
cuses on events or specific instances of objects (e.g., specific actors
in a movie). Third, many prior query languages implicitly focus
on relatively short videos (e.g., minutes) as opposed to the long-
running video streams we consider in this work.

In designing FRAMEQL, we specifically aimed to avoid the user
having to annotate video. Thus, we restricted the language to only
allow expressions that can be automatically computed with high
accuracy (e.g., we do not allow querying for specific events). Re-
searchers have only recently developed techniques to automatically
extract this information from video with high accuracy [32].

A.3 FRAMEQL examples
We give further examples of FRAMEQL in Figure 19a.
First, counting the number of distinct cars can be written as in

Figure 19a, which is not the same as counting the average num-
ber of cars in a frame, as this query looks for distinct instances of
cars using trackid (cf. Figure 2a). Second, error rates can be
set using syntax similar to BlinkDB [5], as in Figure 19b. Third,
NOSCOPE can be replicated in a similar manner to Figure 19c. Fi-
nally, a UDF could be used to classify cars into subtypes, as in
Figure 19d.

A.4 Extensions to FRAMEQL
In this work, we focus on queries that can be optimized using

current techniques. However, many use cases require two features
that we do not currently support: 1) joins and 2) global identifiers
for objects, which can easily be added to the language. Thus, we
describe how to add joins and global identifiers to FRAMEQL.

Joins. Joins can be added to FRAMEQL as in standard SQL.
Joins can be used to answer a wider range of queries. For example,
computing the average count of cars on a single street camera can
be used to determine when the given street is busiest, but not when
traffic is the highest across a city. This query could be answered
by joining on the timestamp and computing the average number of
cars.

Global identification. While FRAMEQL can express a wide range
of queries, several types of queries require a unique global identi-
fier. For example, if two cameras were placed a mile apart on a
highway, the flow rate of cars on the highway could be computed
by the average time it takes for a car to leave one camera and arrive
at the other.

Thus, FRAMEQL could be extended by adding a field globalid.
In the case of cars, the license plate number could be used as a
global identifier, but computing globalid is a difficult task in
general.

B. AGGREGATION

B.1 Full EBS algorithm
We first describe a simplified EBS algorithm for clarity and present

the full algorithm below. EBS will maintain a lower and upper

bound of the estimated quantity that always respects the confidence
interval. Once the bounds are within the error tolerance, the sam-
pling stops. EBS requires an estimate of the range of the data,
which we estimate from the TMAS.

Formally, denote the error and confidence as ε and δ. Denote the
sample mean and standard deviation as X̄t and σ̄t for the t samples
respectively andR to be the range ofXt. Let dt be a sequence such
that

∑∞
t=1 dt ≤ δ and

ct = σ̄t

√
2 log(3/dt)

t
+

3R log(3/dt)

t
.

Then, the upper and lower bounds are respectively UB = min1≤s≤t|X̄s|−cs .
and LB = max(0,max1≤s≤t |X̄s|−cs). EBS will terminate when
LB + ε > UB− ε.

BLAZEIT uses an improved EBS algorithm denoted EBGStop
that uses geometric sampling. We defer the proofs of correctness
to [56]. The full algorithm is given in Algorithm 2. β is a constant
(we use 1.1) and we use dt = c/(logβ(t))p for p = 1.1. Recall that
X̄t and σ̄t are the sample mean and standard deviation respectively.

B.2 Extensions to Aggregation
In this work, we focus on extending aggregation beyond existing

techniques, but we describe how aggregation can optimize queries
over other statistics.

Aggregation for occupancy. Another statistic of interest is the
percentage of frames that are occupied, which can be written in
FRAMEQL as:

SELECT FCOUNT DISTINCT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.01 CONFIDENCE 95%

To answer this query, BLAZEIT can perform Algorithm 1, but in-
stead train a specialized NN that performs binary detection instead
of counting the number of objects in the frame.

Aggregation for number of unique objects. Another statistic of
interest is the number of unique objects, which can be written in
FRAMEQL as in Figure 19a.

To answer this query, BLAZEIT can use standard AQP with the
following sampling procedure:

• Sample i iid from the number of frames.

• For each sampled frame fi, perform object detection and en-
tity resolution on frame fi and fi+1.

• Return the difference of the number of objects that are in
frame fi but not in fi+i.

Aggregation for box statistics. Another class of statistics are
statistics over the bounding boxes, e.g., an analyst might be in-
terested in the average box area or the average position. For any
numerical statistic over the bounding box, BLAZEIT can leverage
traditional AQP, using the following procedure:

• Sample a frame fi iid.

• Perform object detection on fi.

• Sample iid a single box matching the predicates of the query.

• Run the UDF over the box and return the answer.

To increase efficiency, BLAZEIT can cache the box information
if the frame fi is sampled again.

C. OPTIMIZING CONTENT-BASED SELEC-
TION

Overview. In content-based selection, the user is interested in-
formation about the mask or content of every instance of an event,
e.g., finding red buses (Figure 2c). In these queries, the object de-
tection method must be called to obtain the mask. As object detec-
tion is the overwhelming computational bottleneck, BLAZEIT aims
to perform object detection as few times as possible. For example,
BLAZEIT can filter frames that lack red before performing object
detection to look for buses.

To reduce the number of object detection invocations, BLAZEIT
infers filters to discard frames irrelevant to the query before run-
ning object detection on them. BLAZEIT currently supports four
classes of filters: 1) label-based filtering, 2) content-based filtering,
3) temporal filtering, and 4) spatial filtering (described in detail be-
low). Importantly, these filter types and parameters are automati-
cally selected from the query and training data as described below.

While some filters can be applied with no false negatives, others
filters are statistical in nature and may have some error rate. The
error rate of these filters can be estimated on a held-out set, as in
cross-validation [24]. However, as prior work [46] has considered
how to set these error rates, we only consider the case where the fil-
ters are set to have no false negatives on the held-out set. Assuming
the held-out set is representative of the unseen data (i.e., no model
drift, see §3.2), this procedure will incur few false negatives on the
unseen data, which is sufficient for exploratory queries or LIMIT
queries.

Physical Operators. We present instantiations of each class of
filter to demonstrate their effectiveness. We describe each class of
filter and BLAZEIT’s instantiations of the filter class.

Label-based filtering. In label-based filtering, the video is filtered
based on the desired labels. We leverage similar techniques to NO-
SCOPE [46], namely training a specialized NN to discard frames
without the label.

Content-based filtering. In content-based filtering, the video is
filtered based on UDFs that return continuous values (e.g., the UDF
redness returns a measure of redness of an image). BLAZEIT
will attempt to learn a threshold based on the training data or fall
back to naive application of the UDF if it cannot learn a beneficial
threshold.

Currently, BLAZEIT supports automatically learning a filter from
any UDF that only takes the box content, by applying the UDF over
the entire frame. For example, if the query filters for redness >
R and area > A, then redness(frame) > A · R is a safe
threshold. In practice, even more conservative thresholds may work
depending on the UDFs and video.

We describe when content-based filtering is effective below.

Temporal filtering. In temporal filtering, the video is filtered based
on temporal cues. For example, the analyst may want to find buses
in the scene for at least K frames. In this case, BLAZEIT sub-
samples the video at a rate of K−1

2
. BLAZEIT additionally support

basic forms of filtering such as range-based queries.

Spatial filtering. In spatial filtering, only regions of interest (ROIs)
of the scene are considered. For example, a street may have cars
parked on the side but the analyst may only be interested in vehicles
in transit, so the analyst specifies in the query which parts of the
scene contain moving vehicles. The ROI is specified by the user
and can be used for faster object detection inference, and activity
outside the ROI can be ignored, which can increase the selectivity
of other filters.

BLAZEIT crops the images to be more square if the given ROI al-
lows such an operation. For example, if the query only looks for ob-
jects with xmax(mask) < 720 in a 1280×720 video, BLAZEIT

SELECT *
FROM VIDEO
WHERE class = OBJ
AND area(mask) > AREA
AND COLOR(content) > COLOR_VAL

GROUP BY timestamp
HAVING SUM(class = OBJ) >= NBOBJ
LIMIT NFRAMES
GAP 300

Figure 20: Base query for limit queries with predicates. The exact
values for the variables are shown in Table 8.

SELECT FCOUNT(*)
FROM VIDEO
WHERE class = OBJ

AND area(mask) > AREA
AND COLOR(content) > COLOR_VAL

ERROR WITHIN 0.001
AT CONFIDENCE 95%

Figure 21: Base query for aggregation queries with predicates. The
exact values for the variables are shown in Table 8.

will resize the frames to be 720×720. Standard object detectors run
faster when the input is more square: in most existing detectors, the
input image is resized so that the short-edge is a specific size and
the aspect ratio is held constant [32,63] (for a fixed short-edge size,
reducing the long-edge size will make the image smaller). As the
computation scales with the resolution, square images result in the
least computation.

Operator Selection. BLAZEIT will infer which filters can be
applied from the user’s query. We describe how each class of filter
can be inferred from the query.

First, if the user selects an area of the video, BLAZEIT resizes
the frame to be as square as possible, while keeping the area (along
with some padding) visible, as described above.

Second, BLAZEIT infers the times in the video and the subsam-
pling rate from the query to achieve exact results. For example,
if the user queries for objects present in the video for at least 30
frames (1 second), BLAZEIT can sample once very 14 frames.

Third, if the user selects classes, BLAZEIT trains a specialized
NN to detect these classes, as in NOSCOPE. Then, BLAZEIT esti-
mates the threshold on unseen data to attempt no false negatives.

Fourth, if the user provides a content-based UDF over the con-
tent (e.g., to determine the color of the object), BLAZEIT can apply
the UDF over the entire frame (as opposed to the box), and filter
frames that do not satisfy the UDF at the frame level. BLAZEIT
sets UDF filter thresholds similar to how it sets thresholds for spe-
cialized NNs. However, for this procedure to be effective, the UDF
must return a continuous value that can be scaled to a confidence.
Consider two possible UDFs for redness: 1) a UDF which returns
true if the over 80% of the pixels have a red-channel value of at
least 200 (out of 256) and 2) a UDF that returns the average of the
red-channel values. While both UDFs can be used as a filter, the
second will be more effective.

Correctness. BLAZEIT will perform object detection on all frames
that pass its filters, so no false positives will be returned. Spatial
and temporal filters are exact, but label-based and content-based
filters are not. For probabilistic filters, we set the thresholds so
there are no false negatives on the held-out set. The accuracy will

be high, but possibly not perfect, and will return no false positives
for LIMIT queries.

Time complexity. Before filter i is applied, denote the remaining
frames Fi. Denote the cost of filter i on a frame to be ci and the
cost of object detection to be co. If ci ·Fi < co · (Fi−Fi+1), then
the filter is beneficial to run. The filters we consider in this work
are 3 to 6 orders of magnitude faster than object detection and are
thus nearly always worth running.

D. FURTHER EXPERIMENTS AND EXPER-
IMENTAL DETAILS

D.1 Further Experimental Details
Query details for limit queries with predicates. We provide
query details for the limit queries with predicates. The base query
is shown in Figure 20. The exact values for the variables are shown
in Table 8. As shown, each query searched for 5 or 10 instances of
N objects with at least a certain area and color level.

Query details for aggregation queries with predicates. We
show the base query for aggregates with predicates in Figure 21.
The exact values for the variables are the same as the limit queries,
with details shown in Table 8.

Number of samples for aggregation queries. We report the num-
ber of samples required for the naive AQP baseline in the aggrega-
tion queries shown in Figure 6. The target error rate was 0.1. The
number of samples are shown in Table 9.

D.2 Empirical Analysis of EBS
We empirically verify that estimating the range of the data does

not affect the confidence intervals when using EBS. We run the
EBS sampling procedure 100 times for each video and show the
number of times the confidence interval (σ = 95%) was respected
in Table 10 at the most stringent error tolerance we consider (ε =
0.01). As shown, every query respects the confidence interval.

D.3 Experiments with Full Frames
In the experiments in the main text, we filtered portions of frames

where object detection performed poorly. To verify that this choice
does not affect BLAZEIT’s performance, we perform additional
experiments for cardinality-limited queries and sampling queries.
The queries are similar to the ones performed in Figures 7 and 9.

We show results in Figure 22 and Table 11. As shown, BLAZEIT
still outperforms all baselines except for on amsterdam for the
cardinality-limited selection query.

D.4 Content-based Selection Queries
To illustrate the effectiveness of content-based filters, we evalu-

ate BLAZEIT on the query shown in Figure 2c.
We run the following variants:

• Naive: we perform object detection on every frame.
• Binary oracle: we perform object detection on the frames that

contain the object class of interest.
• BLAZEIT: we apply the filters described in §C.

We do not include an AQP baseline, as sampling does not help for
exhaustive queries.

For each query, BLAZEIT’s CBO trains, estimates the selectivity,
and computes the threshold for each filter applicable to the query
(which is determined by BLAZEIT’s rule-based optimizer). We in-
clude the time to train the filters and select the thresholds in the
runtime. Due to the large computational cost of running the object

Table 8: Query details for limit queries with predicates tested in this work.

Video name Object Number of Number of Area Color type Color value Instances
objects frames

taipei bus 2 5 55000 Background red 13.0 5
night-street car 2 10 90000 Luma 110.0 14

rialto boat 3 5 40000 Luma 110.0 8
grand-canal boat 2 5 60000 Background blue 6.5 6
amsterdam car 2 5 18000 Background blue 15.0 5
archie car 2 10 100000 Absolute red 15.0 20

Table 11: Percent reduction in the number of samples necessary to
answer an aggregation query with an error tolerance of 0.01. These
experiments were conducted without filtering portions of frames.
As shown, control variates still provide a reduction in all cases, but
the relative speedups are data dependent.

Video Name % reduction
taipei 19.0%
night-street 22.5%
rialto 3.4%
grand-canal 0.4%
amsterdam 6.1%
archie-day 3.7%

Naive Binary
Oracle

BlazeIt

104

105

Ru
nt

im
e

(s
) 1.0x

8.4x

53.9x

Figure 23: End-to-end throughput of baselines and BLAZEIT on
the query in Figure 2c. The y-axis log scaled.

Table 9: Number of samples required for the aggregation queries
in Figure 6 using naive AQP. The target error was 0.1.

Video Name Number of samples
taipei 3088
night-street 1971
rialto 3826
grand-canal 2107
amsterdam 2018

Table 10: Number of times the confidence interval was respected
for the aggregation queries in Figure 6 using EBS, out of a total of
100 runs. The target error was 0.01, the most stringent we consider.

Video Name Within error tolerance
taipei 99
night-street 100
rialto 100
grand-canal 100
amsterdam 100
archie-day 100

102

103

104

105
Ru

nt
im

e
(s

) 1.0x 1.1x

14.5x

347.0x 711.3x

a) taipei

1.0x 1.0x
0.2x

5.8x 6.7x

b) night-street

102

103

104

105

Ru
nt

im
e

(s
)

1.0x 1.0x 1.4x
7.7x 8.2x

c) rialto

1.0x 1.0x

36.6x 43.6x 55.5x

d) grand-canal

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

102

103

104

105

Ru
nt

im
e

(s
) 1.0x 1.7x

130.4x 67.9x 70.9x

e) amsterdam

Naiv
e

Bina
ry

Orac
le

Sa
mplin

g
Blaz

eIt

Blaz
eIt

(in
de

xe
d)

1.0x

40.0x 41.6x 38.4x
140.1x

f) archie

Figure 22: End-to-end runtime of baselines and BLAZEIT on limit
queries without filtering portions of frames. The y-axis is log-
scaled. All queries looked for 10 events. As shown, BLAZEIT
outperforms the baselines except for sampling on amsterdam.

Naiv
e

+Spatia
l

+Tem
pora

l

+Conten
t
+Lab

el
0

200

Th
ro

ug
hp

ut
 (f

ps
)

1.0x 1.5x 4.4x

37x
54x

a) Factor analysis

Com
bined

-Spatia
l

-Te
mpora

l

-Conten
t
-La

bel

-1.5x
-3.0x

-8.0x -4.3x

b) Lesion study

Figure 24: Factor analysis and lesion study of BLAZEIT’s filters
on the query in Figure 2c.

detector, we extrapolate its cost by multiplying the number of calls
by the runtime of the object detector.

End-to-end performance. The results for the end-to-end runtime
of the baselines and BLAZEIT are shown in Figure 23. As buses
are relatively rare (12% occupancy, see Table 4), the binary oracle
performs well on this query, giving a 8.4× performance improve-
ment over the naive method. However, BLAZEIT outperforms the
binary oracle by 6.4×, due to its extended classes of filters. Fur-
thermore, BLAZEIT delivers up to 54× improved throughput over
naive methods for this query.

Factor analysis. We perform a factor analysis (adding filters one
at a time) and lesion study (individually removing filters) to un-
derstand the impact of each class of filter. Results are shown in
Figure 24. As shown in the factor analysis, every filter adds a non-
trivial speedup. Additionally, removing any class of filter reduces

performance. Thus, every class of filter improves performance for
this query.

E. RULE-BASED OPTIMIZER
BLAZEIT currently uses a rule-based optimizer for queries, as

we have found it sufficient to optimize a large class of queries.
BLAZEIT’s rule-based optimizer attempts to classify queries as (ap-
proximate) aggregation, cardinality-limited queries, or content-based
selection and applies the rules described in the main paper in these
settings. For all other queries, BLAZEIT falls back to materializing
all the rows in the FRAMEQL table.

To determine if a query is an approximate aggregation query (ex-
act aggregation requires all the relevant rows to be materialized),
BLAZEIT inspects the FRAMEQL query for the ERROR keyword
and an aggregation keyword (e.g., FCOUNT or AVG). BLAZEIT will
then determine the necessary fields and perform approximate ag-
gregation as described above.

To determine if a query is a cardinality-limited query, BLAZEIT
inspects the FRAMEQL query for the LIMIT keyword. BLAZEIT
then determines the necessary fields for the query and executes the
cardinality-limited query as described above.

To determine if the query is a content-based selection query (with
applicable filters), BLAZEIT will inspect the query for the predi-
cates as described in Section C and apply them as described above.

In all other cases, BLAZEIT will default to applying object de-
tection to every frame.

