
ZKML: An Optimizing System for ML Inference in

Zero-Knowledge Proofs

Bing-Jyue Chen
bjchen4@illinois.edu

UIUC
USA

Suppakit Waiwitlikhit
suppakit@stanford.edu
Stanford University

USA

Ion Stoica
istoica@berkeley.edu

UC Berkeley
USA

Daniel Kang
ddkang@illinois.edu

UIUC
USA

Abstract

Machine learning (ML) is increasingly used behind closed
systems and APIs to make important decisions. For example,
social media uses ML-based recommendation algorithms to
decide what to show users, and millions of people pay to use
ChatGPT for information every day. Because ML is deployed
behind these closed systems, there are increasing calls for
transparency, such as releasing model weights. However,
these service providers have legitimate reasons not to release
this information, including for privacy and trade secrets.
To bridge this gap, recent work has proposed using zero-
knowledge proofs (specifically a form called ZK-SNARKs)
for certifying computation with private models but has only
been applied to unrealistically small models.
In this work, we present the first framework, ZKML, to

produce ZK-SNARKs for realistic MLmodels, including state-
of-the-art vision models, a distilled GPT-2, and the ML model
powering Twitter’s recommendations. We accomplish this
by designing an optimizing compiler from TensorFlow to
circuits in the halo2 ZK-SNARK proving system. There are
many equivalent ways to implement the same operations
within ZK-SNARK circuits, and these design choices can
affect performance by 24×. To efficiently compile ML mod-
els, ZKML contains two parts: gadgets (efficient constraints
for low-level operations) and an optimizer to decide how to
lay out the gadgets within a circuit. Combined, these opti-
mizations enable proving on a wider range of models, faster
proving, faster verification, and smaller proofs compared to
prior work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3650088

Interesting
tweets?

ML model M'
(e.g., Twitter

recommender)
w/o
ZKML

ZKML

 or or ?

By

Twitter employees

ML model M
(e.g., Twitter

recommender)
w/

ZKML

ZK is cool

ZK is cool

+ZKML Proof

Interesting
tweets?

M (the user-expected model)

M' (another model)

ML-enabled
web service

Figure 1. Example use of ZKML in verifying that tweets are
ranked honestly from Twitter.

1 Introduction

Machine learning (ML) and artificial intelligence (AI) tech-
niques are becoming increasingly integrated into our world.
They now power social media feeds [32], product recommen-
dations [8], medical decisions [5], and even provide day-to-
day advice (e.g., ChatGPT) [33]. As these ML systems become
increasingly important, there have been increasing calls for
transparency [34].

One way to provide this transparency would be to release
the model weights and user data. However, the companies
deploying these ML models have valid reasons to withhold
model weights and data. Releasing certain kinds of data (e.g.,
medical data) would violate user privacy, and model weights
are often trade secrets (e.g., GPT-4 purportedly costs over
$100M to train [21]).
To address this, recent work has proposed using zero-

knowledge proofs (specifically ZK-SNARKs, zero-knowledge
succinct non-interactive arguments of knowledge [6]) to
execute ML models without revealing their weights [10, 26,
44]. ZK-SNARKs allow a prover to produce a computationally
binding proof that some computation happened honestly. In
the context of ML, a prover can produce a ZK-SNARK that
ensures a specific set of weights were used on some input

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

known to the prover. For example, ZK-SNARKs could be
used to verify that tweets were generated honestly from a
fixed recommendation model (Figure 1).

Unfortunately, all prior work on ZK-SNARKs for ML can
only produce proofs for unrealistically small models, such
as those for MNIST and CIFAR-10 [10, 26, 44]. However,
potential users of ZK-SNARKs for ML are largely interested
in realistic, production models (e.g., ImageNet-scale models,
language models). Furthermore, this prior work only applies
to convolutional neural networks (CNNs). This limits the
practical applicability of ZK-SNARKs for ML transparency.

In this work, we substantially advance the frontier of pos-
sible models, both in terms of diversity and complexity, pos-
sible to ZK-SNARK. To do so, we build ZKML, an optimizing
compiler that transforms TensorFlow models to ZK-SNARK
circuits.ZKML’s first component are gadgets that perform ba-
sic operations for ML models, such as dot products, softmax,
and pointwise non-linearities. Given these gadgets, ZKML’s
second component is its circuit layouter, which optimizes the
circuit layout for a given hardware target. ZKML is designed
to be modular, allowing developers to add gadgets.
As mentioned, all of the prior work in this space only

applies to CNNs. As such, they only optimize linear layers
(convolutions and fully connected layers) and the rectified
linear unit (ReLU) non-linearity. These operations are not
sufficient for more general models, including recommenda-
tion systems, language models, and more.

We design and implement a large number of gadgets that
allow for a wider range of models. These gadgets include vari-
able integer division, the maximum operator, the softmax op-
erator, pointwise non-linearities, and more. Combined, these
allow ZKML to ZK-SNARK substantially more diverse mod-
els, including the mentioned recommendation systems (the
Twitter algorithm), language models (DistillGPT-2), small
diffusion models, and more. Furthermore, ZKML’s gadgets
are designed to be optimally laid out for various circuit con-
figurations, resulting in high performance.

Given these gadgets, ZKML still must decide on the circuit
size, circuit layout, and which of the gadgets to use. In order
to do so, we designed and implemented a circuit layout opti-
mizer. ZKML’s optimizer simulates the circuit layout process
for a given configuration and uses a cost model to determine
which layout is optimal for a given neural network. Com-
pared to using a fixed configuration, ZKML’s optimizer can
improve performance by up to 131%.
Combined, our optimizations allow ZKML to construct

proofs of ML models that are up to 5× larger than prior work,
in addition to a wider range of models. Furthermore, ZKML
can prove models at a fixed accuracy faster than prior work
while achieving up to 5× faster verification and 22× smaller
proofs on MNIST and CIFAR-10, the only datasets prior work
considers. Although much work remains for widespread
deployment, ZKML substantially advances the state-of-the-
art of ZK-SNARKs for ML models.

2 Use Cases

Before we describe ZKML, we first describe how ZK-SNARKs
can be used in ML applications. All of the applications we
describe must be combined with other techniques to be fully
secure (e.g., trusted databases [47] or sensors). As we fo-
cus on ZK-SNARKs for ML in this work, we simply sketch
the end-to-end application. These applications use the same
underlying ZK-SNARK technology applied in different ways.
Beyond these applications, ZK-SNARKs can be used to

prove any computable function over the ML model outputs.
This can include fairness properties or other auditable prop-
erties of the ML models. Several of these use cases have been
explored in prior work [23, 27].

Trustless audits. ML models are becoming increasingly
powerful and trained on private user data. For example, Ope-
nAI has not released the weights for their commercial models
(gpt-3.5-turbo, gpt-4, etc.) at the time of writing. As an-
other example, recommender system models (e.g., as used
by Twitter) are trained on private user data, so the model
weights cannot be made public. However, users often wish
to perform audits over these systems [3, 23, 40], leading to
tensions between privacy (of user data) and trust (whether
or not the model provider is cheating).

ZK-SNARKs allow the model provider to commit to a fixed
model and prove that an output was generated from that
fixed model. These ZK-SNARKs can be combined with other
techniques, such as verified databases, to perform end-to-end,
trustless audits. Such audits have been previously proposed
[23], but no work has succeeded in creating ZK-SNARKs of
realistic models.

We show a system diagram of how to perform an end-to-
end audit in Figure 2.

Private biometric authentication. Increasingly, online
services want assurances that their users are real people.
With the rise of generative AI, this becomes increasingly
challenging, and existing biometric authentication solutions
violate privacy.

ZK-SNARKs, combined with attested sensors (i.e., a sensor
that contains a hardware unit to digitally sign the sensor
data) [9, 13], make it possible to perform trustless biometric
identification. Namely, the user would take a photo (ideally
with a depth camera) and use an ML model to verify that
their face matches a previously identified face.

Trustless credit scores. Beyond audits of ML systems, ZK-
SNARKs for ML (also combined with trusted data access)
allow for the computation and verification of trustless credit
scoring [30]. Trustless credit scores are particularly interest-
ing in the blockchain setting, where users may wish to draw
undercollateralized loans. The credit score can be computed
by summarizing the user’s on-chain history and executing a
machine learning model to determine the credit-worthiness
from this history. By using ZK-SNARKs, both the borrower

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

Model

Proof

Optimizer

Prover

Verifier

ZKML-P

Compiler

ZKML-V

ZKML-P

Proof

Model
compilation

ZKML
proving

ZKML
verification +

+

+ +

Model circuit

Model circuit

Model circuit

ZKML inputs ZKML modules ZKML outputs

ML
output

ML
input

or

Verified Not verified

(a) Diagram of ZKML proving and verification.

Provider

Audit proof

+ Audit output
(e.g., testing acc.)

ML test set

+
Test set

inference +

ZKML proof

Audit algorithm
(e.g., compute acc.)

Auditor

Audit
compilation

ZKML
proving

Audit
proving

Provider

+

ZK
prover

ML
outputs

ML
outputs

Model circuit

Audit circuit

Audit circuit

ZK
 compiler

ZK inputs ZK outputsModules

(b) Diagram of an end-to-end audit.

Figure 2. Diagram of using ZKML in an audit.

Term Definition
Circuit Representation of computation within

the ZK-SNARK.
Lookup table Injective mapping of input values to

output values (similar to a hash map).
Constraint Restriction on the values of the grid.
Selector Variable used to determine which poly-

nomial constraint to apply to a row.
Polynomial constraint Enforces a polynomial of a row of the

grid is zero.
Copy constraint Enforces two cells of the grid are equal.
Lookup constraint Enforces a tuple of cells is in a lookup

table.
Table 1. List of terms used to describe ZK-SNARK circuits
in this work.

and lender can be assured that the credit score was computed
honestly.

3 ZK-SNARKs and ML

In this work, we focus on the halo2 proving system, which
supports the Plonkish randomized AIR (arithmetic inter-
mediate representation) with preprocessing [4, 12]. A full
description of the proving system is outside of the scope of

this manuscript, but we describe properties salient to the
performance of ML circuits.

Circuit representation. Logically, we can view circuits
as 2D grids where the values of the cells are in some large
prime, finite field, F𝑝 . The number of rows must be a power
of two. The cells are constrained in three ways:

1. Enforcing that an arbitrary polynomial where the vari-
ables correspond to the cells within one or more adja-
cent rows evaluates to zero (custom gates/constraints).

2. Enforcing that arbitrary cells within the grid are equal
(copy/permutation constraint).

3. Enforcing that a specific pattern of cells within a row
is within some table (lookup constraint).

We provide a list of terms in Table 1.

Representing computations. ZK-SNARKs can represent
arbitrary computations: this can be seen as polynomial con-
straints and equality checks are universal [42]. However,
there are many ways to represent the same computation
within a ZK-SNARK.

As a concrete example, consider performing the ReLU op-
eration, which is the function 𝑓 (𝑥) = max(0, 𝑥). Assume
that 𝑥 is represented using fixed-point with 𝑏 total bits in the
representation. One common way that prior work represents
the ReLU is by performing a full bit decomposition using
polynomial constraints, setting the sign bit to zero, and re-
composing 𝑥 (with the sign bit set to zero) [27]. This method
of computing ReLU does not require any lookup arguments,
but requires 𝑏 + 2 cells.
We can perform the ReLU using only two cells with a

lookup table, where the table consists of two columns with
(𝑥, 𝑓 (𝑥)). This table has at least 2𝑏 rows.
Although the second representation uses fewer cells, the

relative costs of both methods depend heavily on the number
of ReLU operations performed. If only a single ReLU opera-
tion is performed, the cost of the table may be higher than
the cost of using the expanded representation.
As we will see, the choice of representing computation

affects costs dramatically.

Performance. The dominant cost for ZK-SNARKs is the
proving time: as we will show, verification is orders of mag-
nitude cheaper than proving.

Many factors affect the proving latency for halo2. Roughly,
the proving latency scales with the total number of rows
and columns, when accounting for the selector columns, the
lookup columns, the total number of constraints, and the
maximum degree of all of the constraints. However, the op-
erations done internally include polynomial operations, Fast
Fourier Transformations (FFTs), and Multi-Scalar Multipli-
cations (MSMs) over large finite fields or elliptic curves. As
such, it is difficult to predict the proving latency exactly, but
this can be benchmarked relatively easily as the operations
are the same for a fixed circuit configuration.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

ZEN vCNN zkCNN ZKML
CNN ✔ ✔ ✔ ✔
CNN training ✗ ✗ ✗ ✔
GPT ✗ ✗ ✗ ✔
Twitter model ✗ ✗ ✗ ✔
Diffusion ✗ ✗ ✗ ✔

Table 2. List of models supported by ZKML and by prior
work.

To understand the complexities of performance optimiza-
tion for halo2 circuits, consider a toy circuit with 10 columns
and 220 rows where 220 − 100 of the rows are occupied by
arithmetic operations (i.e., arithmetic constraints are already
present). Let us further assume that there is a single ReLU
operation that must be performed with 16 bits of precision.
Consider three ways of performing this single ReLU:

1. Defining a new selector with a lookup table with the
ReLU inputs/outputs. This adds three columns (the
selector, input lookup column, and output lookup col-
umn) and an additional constraint, and takes up one
additional row.

2. Defining a new selector that spans four rows and per-
forms the bit-decomposition. This adds one column
(the selector) and an additional constraint, and takes
up four additional rows.

3. Using the existing arithmetic constraints to perform
the bit decomposition. Assuming one bit per row, this
takes up an additional 32 rows.

In our toy example, surprisingly, the third method is the
most efficient. However, if we instead performed 218 ReLU
operations, the table may be more efficient: it takes up sub-
stantially fewer rows (the second and third methods would
take 220 and 223 rows, respectively).

Thus, the most efficient circuit layout depends globally on
the operations within the ML model.

4 ZKML Architecture and Overview

We describe ZKML’s high-level architecture in this section.

4.1 Overview

Recall that ZKML compiles ML model specifications to ZK-
SNARK circuits. To do so, ZKML uses a standard method
of representing ML model computation: data are tensors
(𝑛-dimensional arrays) and operations (i.e., layers) take as
inputs tensors and outputs tensors. In this work, we repre-
sent all values of the tensors as fixed-point numbers, where
ZKML chooses the scale factor. Choosing the scale factor
appropriately is critical for high performance.

ZKML contains two main components: low-level gadgets
and an optimizer to select the circuit layout for a given ML
model. The optimizer composes the gadgets to form the lay-
ers. ZKML is designed to be modular, allowing developers to

ZEN vCNN zkCNN ZKML
Conv2D ✔ ✔ ✔ ✔*
FullyConnected ✔ ✔ ✔ ✔*
Pooling ✔ ✔ ✔ ✔*
ReLU ✔ ✔ ✔ ✔
DepthwiseConv2D ✗ ✗ ✗ ✔
BatchMatMul ✗ ✗ ✗ ✔
Softmax ✗ ✗ ✗ ✔
Other non-linearities ✗ ✗ ✗ ✔

Table 3. A non-exhaustive list of layers supported by ZKML
and by prior work. The * indicates that ZKML provides ad-
ditional optimized implementations through various com-
binations of low-level gadgets. Many of these layers, such
as BatchMatMul and Softmax are required for modern ML
models, such as GPT.

add gadgets for increased flexibility and performance. Fur-
thermore, its optimizer can target different hardware back-
ends, such as servers with a varying number of CPUs and
RAM. We show the overall architecture diagram of ZKML
in Figure 3.

ZKML supports a much wider range of models compared
to prior work (Table 2). Currently, ZKML supports CNNs,
LSTMs, Transformers, MLPs, diffusion models, and other
commonly used ML models. Because halo2 is universal (i.e.,
can represent any computation) it is hypothetically possi-
ble to support any ML model. However, ZKML currently
does not support branching or variable-length loops. Thus,
ZKML requires fixed-length inputs for NLP models. Loops
and branches will be unrolled.

4.2 Components

ZKML contains several components, including low-level gad-
gets, an optimizer, and a transpiler from TensorFlow.

The reason that ZKML can support a wide range of models
is due to our implementation of low-level gadgets that can
be composed to compute a variety of ML layers. We show
a comparison of prior work and ZKML in Table 3. ZKML’s
low-level gadgets broadly fall under four categories:

1. Shape operations
2. Arithmetic operations
3. Pointwise non-linearities
4. Specialized operations
We describe the gadgets in detail in Section 5. However,

we highlight one design choice to “future-proof” ZKML:
each constraint for a gadget is only within a single row.
Although the existing halo2 library allows for constraints
across rows, we limit ZKML to single-row constraints be-
cause new forms of proving systems (that have not yet been
integrated into halo2) only allow single-row constraints.
Furthermore, we have found that this does not significantly
affect performance.

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

ZK
Backend ZK: halo2 proof system: KZG and IPA commitment schemes

Low-level
Gadgets

Shape
operations

ML
BackendML: PyTorch or TensorflowArithmetic

operations Non-linearities Specialized
operations

Logical
Layers ML layers (e.g., Fully connected, Conv2D, DepthwiseConv2D)

Core Aggregator
(from layers to a halo2 circuit)

Layout
Optimizer

User
Tools

Prover & Verifier
(KZG/IPA)

Test
(for mock testing)

Input data
converter Model converter

Benchmark
(for halo2

operations)

Optimal model circuit discovery and proving

Preprocessing

Mapping
ML layers

to
ZKML ones

Model implementations creator

Benchmark
summarizer

Model circuit
grid size updater

Optimizer
utils

ZKML
Figure 3. ZKML architecture diagram. ZKML is built on the halo2 proving system. The halo2 related submodules implemented
in Rust are colored in yellow. The submodules implemented in Python are colored in green, which are largely ML-related. We
provide a simple bash interface for users to find and prove optimal circuit with ZKML, which is colored in orange.

ML model specification Logical plans Physical plans Cost estimation

Layer 1: square constraint
Layer 2: dot product
…

Layer 1: dot product
Layer 2: accumulator
…

Plan 1

Plan 2

128.3s

437.6s

Figure 4. ZKML optimizer architecture diagram. The ZKML optimizer compiles ML model specifications to logical plans, lays
out physical plans, and chooses the optimal physical plan based on cost estimates.

ZKML’s optimizer takes as input an ML model specifica-
tion and outputs an optimized circuit layout. To do so, ZKML
composes the low-level gadgets into layers. As we describe in
Section 7, ZKML must choose which gadgets to use, the size
of the circuit, and the layout. These choices are dependent
on the hardware target.
We show a high-level architecture diagram of ZKML’s

optimizer in Figure 4.

4.3 Security

ZKML inherits all of the assumptions and security properties
of the underlying proving system. In particular, it inherits
all security properties of halo2, including zero-knowledge,

completeness, and knowledge soundness [6]. Importantly,
the knowledge soundness property intuitively means that
the prover must know the input and the weights.

halo2 supports two underlying commitment schemes:
KZG [20] and IPA (inner-product argument) [7]. The security
assumptions depend on the underlying commitment scheme
we use, but only require general, widely used cryptographic
assumptions.
The KZG commitment scheme requires a one-time, uni-

versal trusted setup (i.e., a single trusted setup that can sub-
sequently be used for all models and proofs). This trusted
setup has been completed in a distributed manner by Privacy
Scaling Explorations [35] for 228 with over 75 participants.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

We use this trusted setup in our work, which removes the
need for users of ZKML to run their own trusted setup. They
can also contribute to the existing trusted setup for further
security.

The IPA commitment scheme is transparent, meaning that
there is no trusted setup required. However, the IPA commit-
ment schema requires larger proofs and higher verification
time. Users of ZKML can choose the KZG or IPA version of
ZKML depending on the security properties they desire.

4.4 Limitations

Aswith all prior work for ZK-SNARKs andML,we are limited
by the memory consumption and hardware resources for
reasonable proving times. The largest model we can prove
with under 1TB of RAM is the distilled version of GPT-2
we consider in Section 9. Furthermore, we do not focus on
proofs of training. Nonetheless, ZKML is capable of proving
a much larger variety of models and much larger models
compared to prior work. We believe the path towards higher
performance largely lies in creating more efficient proving
systems.

ZKML requires that themodel architecture (but notweights)
is revealed. Given the recent trends in open-source models
(e.g., variations of Llama), we do not believe this is a signifi-
cant constraint for many applications.
Another major concern for all ZK-SNARKs is that the

representation of the computation within the ZK-SNARK
is equivalent to the original computation (i.e., correctness
of the circuit). A formal proof of correctness is outside the
scope of this work.

5 ZKML Gadgets

We now describe ZKML’s gadgets.

5.1 Overview

ZKML contains gadgets that are designed to represent the
majority of common operations in widely used ML models.
Broadly, these gadgets fall under four categories: shape oper-
ations, arithmetic operations, pointwise non-linearities, and
specialized operations. We describe these gadgets below.

Shape operations. Because tensors can hold references
to previously assigned cells, shape operations can be done
logically. Namely, any operation that changes the shape, sub-
sets, or concatenates one or more tensors can be performed
by creating a new tensor with references to previously cre-
ated tensors. These operations are “free” with respect to the
proving time since new cells are not assigned.

Arithmetic operations. There are many arithmetic opera-
tions that are commonly performed in ML models, including
addition, multiplication, division, and squaring. These oper-
ations are typically a part of a larger computation, such as a
convolution or fully connected layer.

Name Operation
Add(𝑥,𝑦) 𝑥 + 𝑦
Sub(𝑥,𝑦) 𝑥 − 𝑦
Mul(𝑥,𝑦) 𝑥 · 𝑦
Div(𝑥,𝑦) ⌊𝑥/𝑦⌋
DivRound(𝑥,𝑦) Round(𝑥/𝑦)
Square(𝑥) 𝑥2

SquaredDiff(𝑥,𝑦) (𝑥 − 𝑦)2
Sum(®𝑥) ∑

𝑖 𝑥𝑖
DotProd(®𝑥, ®𝑦) ®𝑥 · ®𝑦

Table 4. Partial list of arithmetic operations ZKML supports.

An important consideration for performance is how to
implement these operations. For example, suppose we have
a dot product constraint. This constraint could be used to
implement pairwise addition and multiplication of tensors,
in addition to squaring a tensor element-wise. However, all
of these operations (addition, multiplication, squaring) could
also be implemented with fewer cells using additional con-
straints.
We implement all of these operations (and more) as gad-

gets that the optimizer can choose from. A partial list of
arithmetic gadgets is in Table 4.

A final consideration in implementing these gadgets is to
account for the fixed-point representation of values within
the finite field. As such, multiplication and division oper-
ations must account for the fixed-point scaling factor. In
particular, we can implement division with a multiplication
and rescaling.

Pointwise non-linearities. Another common set of opera-
tions within ML models are pointwise non-linearities. These
are commonly referred to as activation functions. Pointwise
non-linearities include the ReLU, ELU, sigmoid, exponential,
and tanh functions. With the exception of the ReLU function,
these functions are difficult to approximate with polynomial
constraints efficiently.

Thus, to efficiently perform pointwise non-linearities, we
use lookup tables. Since the table size can be at most the grid
length, the range of inputs to the non-linearities constrains
the precision of the fixed-point representation. As we will
see, this constraint is important for the optimizer to decide
the grid size.

Specialized operations. We refer to all other operations
as specialized operations as they require custom constraints.
In this work, all specialized operations arise from the need
to perform the softmax operation. As we will see, a high-
performance softmax requires the maximum operation, a
scaled exponential operation, and a variable division oper-
ation. In this section, we describe how to perform the indi-
vidual operations and describe how to combine them into a
high-performance softmax in Section 6.

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

First, consider the maximum operation: 𝑐 = max(𝑎, 𝑏). In
order to constrain 𝑐 to be the maximum, we first constrain 𝑐
to be equal to one of 𝑎 or 𝑏 using the polynomial constraint
(𝑐 − 𝑎) (𝑐 − 𝑏) = 0. We can then constrain 𝑐 to be greater
than or equal to both 𝑎 and 𝑏 using two lookup constraints:
𝑐 − 𝑎 ∈ [0, ..., 𝑁) and 𝑐 − 𝑏 ∈ [0, ..., 𝑁). The table [0, ..., 𝑁) is
required for the pointwise non-linearities so it can be reused
for the maximum operator.

Second, the scaled exponentiation refers to the operation
𝑦 = exp(𝑥) ·SF, where SF is the scale factor. This can be done
in the same way as the pointwise non-linearities are done.

Third, consider variable division: VarDiv(𝑎, 𝑏) = Round(𝑏/𝑎),
where 𝑎, 𝑏 ∈ [0, ..., 𝑁). Here, 𝑏 and 𝑎 are unknown ahead
of time (unlike the fixed-point scaling factor). In order to
perform variable (rounded) division, we first describe how to
perform standard integer division. Standard integer division
is equivalent to the following equation holding:

𝑏 = 𝑐 · 𝑎 + 𝑟
for 𝑟 ∈ [0, ..., 𝑎). Thus, we can use the polynomial constraint
𝑏 − 𝑐 · 𝑎 − 𝑟 = 0 and constrain that 𝑎 − 𝑟 ∈ [0, ..., 𝑁). To
perform rounded division, we note that 𝑐 = Round(𝑏/𝑎) is
equivalent to

𝑐 =

⌊
2𝑏 + 𝑎
2𝑎

⌋
=

⌊
𝑏

𝑎
+ 1
2

⌋
but the first equation is equivalent to standard integer divi-
sion with 2𝑏 +𝑎 as the numerator and 2𝑎 as the denominator.
Finally, we note that if 𝑎 is larger than 𝑁 , we can decompose
𝑎 into “limbs” of size 2𝑁 to allow for higher precision. 𝑟 can
similarly be decomposed.

5.2 Examples

We now provide concrete examples of gadgets. Throughout
this section, denote the number of columns as 𝑁 .

Sum. The first example we consider is the sum of a fixed
size vector Sum(®𝑥) = ∑𝑛

𝑖 𝑥𝑖 , where 𝑛 = 𝑁 − 1. We can lay
out the elements of the vector and the result 𝑧 = Sum(®𝑥) in
a row as follows:

𝑥1 | · · · |𝑥𝑛 |𝑧.
The constraint is:

𝑧 −
𝑛∑︁
𝑖

𝑥𝑖 = 0.

Dot product without bias. Consider a dot product of fixed
size without a bias. Namely,

DotProd(®𝑥, ®𝑦) =
𝑛∑︁
𝑖

𝑥𝑖 · 𝑦𝑖 .

For the gadget, we let 𝑛 = ⌊𝑁−12 ⌋.
To compute the dot product, we lay out ®𝑥 and ®𝑦 and the

result 𝑧 = DotProd(®𝑥, ®𝑦) as follows:
𝑥1 | · · · |𝑥𝑛 |𝑦1 | · · · |𝑦𝑛 |𝑧

If 𝑁 is even, we leave a cell empty. The constraint is simply:

𝑧 −
𝑛∑︁
𝑖

𝑥𝑖 · 𝑦𝑖 = 0.

Suppose we had two vectors ®𝑥 and ®𝑦 of cardinality𝑚 > 𝑛.
We can decompose the overall dot product into ⌈𝑚

𝑛
⌉ dot

products. We can then use the sum gadget from above to add
the partial results. As we will see, there are many ways to
perform a large dot product.

Dot product with bias. Consider a dot product of fixed size
with a bias: DotProd(®𝑥, ®𝑦,𝑏) = 𝑏+∑𝑛

𝑖 𝑥𝑖 ·𝑦𝑖 . Here, 𝑛 = ⌊𝑁−22 ⌋.
We can lay out the row as follows:

𝑥1 | · · · |𝑥𝑛 |𝑦1 | · · · |𝑦𝑛 |𝑏 |𝑧

and use the constraint

𝑧 − 𝑏 −
𝑛∑︁
𝑖

𝑥𝑖 · 𝑦𝑖 = 0.

In order to compose a larger dot product, we can decom-
pose the dot product into ⌈𝑚

𝑛
⌉ dot products with biases. The

first bias is set to zero and the remainder of the biases are
set to the accumulation. This method of computing a larger
dot product does not require the sum gadget.

As shown in this example, there are a number of ways to
perform the same operation. The efficiency will depend on a
large number of factors, including the total size of the circuit
and the size of the dot products.

ReLU. As a final example, consider computing the ReLU
function pointwise over a vector ®𝑥 . Here, | ®𝑥 | = ⌊𝑁2 ⌋. We can
simply lay out the row as

𝑥1 |ReLU(𝑥1) | · · · |𝑥𝑛 |ReLU(𝑥𝑛)

The constraints ensure that pairs of columns (𝑥𝑖 , ReLU(𝑥𝑖)) ∈
𝑇 for a table 𝑇 that contains the domain and range of the
ReLU function. Other pointwise non-linearities can be per-
formed similarly.

6 ZKML Layers

We now describe how ZKML implements ML layers.

6.1 Overview

Given low-level gadgets, ZKML will compose these into im-
plementing ML model layers within a given circuit. ZKML’s
optimizer will decide on the specific layout and choices of
gadgets for a givenMLmodel. However, we first describe sev-
eral concrete instantiations and optimizations for commonly
used ML layers.
ZKML currently supports 43 layers, which broadly fall

under linear layers, arithmetic layers, activation layers, and
softmax. Several of these layers can be computed as com-
positions of base layers. We show a non-exhaustive list of
layers in Table 3.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

Linear layers. In this work, we refer to a linear operation
as a layer that takes one or more tensors as input and out-
puts a tensor composed of linear combinations of the input
(potentially with a bias term). Linear layers include convo-
lutional layers, fully connected layers, and batched matrix
multiplication layers.

Consider a fully connected layer, which computes a matrix
multiplication of𝑊 (the weights) and 𝐴 (the input). Naively
computing the matrix multiplication takes𝑂 (𝑛3) operations.
We can perform naive matrix multiplication by computing
each element of the result (𝐵) by performing the dot product
of𝑊𝑖 and 𝐴𝑇

𝑗 .
However, we can perform matrix multiplication asymptot-

ically more efficiently by using Freivalds’ algorithm to verify
matrix multiplication [11]. In particular, we can compute 𝐵
“outside” of the circuit and simply verify that 𝐵 =𝑊𝐴. To
perform the verification, we can take a random vector 𝑟 and
verify that 𝐵𝑟 =𝑊𝐴𝑟 , which is 𝑂 (𝑛2). Similarly, the result
can be computed with a series of dot products. The random
vector 𝑟 must be generated after the matrix and results are
committed.
Other linear layers (convolutions, batched matrix multi-

plication) can be accelerated with Frievald’s algorithm as
well.

Arithmetic layers. Arithmetic layers perform arithmetic
operations between two or more tensors. These operations
include addition, subtraction, multiplication, division, and
computing the squared difference between two tensors.

These layers can be implemented with custom gadgets or
by repurposing the dot product gadget. The overall efficiency
within the circuit depends on the relative costs of adding an
extra constraint compared to the inefficiency of using the
dot product gadget.

Activation layers. Activation layers apply pointwise non-
linearities to tensors. As we described in Section 5, all of
the pointwise non-linearities in this work (with the excep-
tion of ReLU) are difficult to approximate with polynomial
constraints. As such, they require lookup tables.

Softmax. The softmax function is a non-linear, vector-
valued function, which computes𝑦𝑖 = 𝑒𝑥𝑖∑

𝑒𝑥𝑖
. Because the soft-

max is a vector-valued function, it would require a lookup
table that is unrealistically large (for a vector of size 𝑛, it
would require a table of size SF𝑛).

To compute the softmax, we use a standard trick for nu-
meric stability. Namely, we compute the softmax of 𝑥𝑖 −
max𝑗 𝑥 𝑗 . This rescaling reduces the range of the exponen-
tials and produces the same result as the softmax is shift
invariant. We can compute the maximum of the vector 𝑥
using the maximum gadget described in Section 5.

Given the exponentiated vector, we can compute the sum
and divide by the sum. However, naively doing this will
result in catastrophic loss of precision. To understand why,

it is clear that the sum of 𝑒𝑥𝑖 is greater than each 𝑒𝑥𝑖 . Using
the standard integer division gadget will result in all values
except potentially one to be rounded to zero.
To address the numerical instability we could divide the

sum by the fixed-point scale factor. However, this will also re-
sult in reduced precision. Instead, we scale the numerator by
the scale factor. As we show, these optimizations combined
lead to a high-performance softmax.

6.2 Examples

We provide an example of composing gadgets to produce
layers to illustrate the choices ZKML’s optimizer must make.
Consider a simple fully connected layer with a bias. The
inputs are matrices 𝐴 and 𝐵, and a bias 𝑏. The output is
the result 𝐶 = 𝐴 · 𝐵 + 𝑏 when computed in fixed-point. For
simplicity, let 𝐵 be a vector (so the operation is instead a
matrix-vector multiplication).

We can decompose the matrix multiplication into a series
of dot products by computing the dot product of the rows
of 𝐴 with 𝐵. Assuming the number of columns 𝐴 is larger
than the number of columns in the circuit, we must split the
dot product across rows. To do so, we can use the dot prod-
uct without a bias, accumulate, and add the bias using the
addition gadget. However, we can also use the dot product
with a bias and have the first bias be 𝑏. The optimal choice
of gadget depends on the size of the matrices and the size of
the circuit.

We must further perform the fixed-point scaling after the
multiplication. If this is followed by a non-linearity, we can
fuse these operations.

As we can see, there are a large number of choices when
compiling even a single layer from gadgets.

7 ZKML Optimizer

We now describe ZKML’s optimizer.

7.1 Overview

ZKML’s optimizer takes as input an ML model specification
and outputs an optimized halo2 circuit layout. As described
in Section 4, ZKML currently takes fixed-functionMLmodels.
Operations such as branching and looping will be unrolled.
Given a set of layers in an ML model, ZKML has many

choices of circuit layout. Fully profiling each possible layout
is infeasible, especially for larger ML models: producing a
single proof could take hours.

Unfortunately, it is also difficult to choose the optimal lay-
out since individual choices affects the global performance.
As a simple example, because the number of rows in a circuit
must be a power of two, increasing the number of rows to
reduce the number of columns can have dramatic effects.
Thus, instead of exhaustive profiling, ZKML instead per-

forms the following procedure to optimize circuit layout:

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

Algorithm 1 Optimizer for ZKML
1: Input : ML Model𝑀 , Operation statistics 𝑠𝑡𝑎𝑡
2: Output : Best physical layout 𝐵
3: 𝑠𝑡𝑎𝑡 ← BenchmarkOperations(ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒) ⊲ Once only
4: function OptimizeLayout(𝑀, 𝑠𝑡𝑎𝑡)
5: 𝐿 ← GenerateLogicalLayouts(𝑀)
6: 𝐵 ← NULL
7: 𝑐𝑜𝑠𝑡 ←∞
8: for ℓ in 𝐿 do

9: 𝑛𝐶𝑜𝑙𝑠 ← 𝑁min
10: while 𝑛𝐶𝑜𝑙𝑠 ≤ 𝑁max do

11: 𝑏 ← GeneratePhysicalLayout(ℓ, 𝑛𝐶𝑜𝑙𝑠)
12: 𝑘 ← FindOptimalK(𝑏, 𝑛𝐶𝑜𝑙𝑠)
13: 𝑏 ← UpdatePhysicalLayout(𝑏, 𝑛𝐶𝑜𝑙𝑠, 𝑘)
14: 𝑇 ← EstimateCost(𝑏, 𝑛𝐶𝑜𝑙𝑠, 𝑘, 𝑠𝑡𝑎𝑡)
15: if 𝑇 < 𝑐𝑜𝑠𝑡 then

16: 𝑐𝑜𝑠𝑡 ← 𝑇

17: 𝐵 ← 𝑏

18: end if

19: 𝑛𝐶𝑜𝑙𝑠 ← 𝑛𝐶𝑜𝑙𝑠 + 1
20: end while

21: end for

22: return 𝐵

23: end function

1. ZKMLwill generate candidate choices of gadgets based
on the operations within the ML model.

2. ZKML will generate circuit layouts of varying grid
sizes from the gadget choices, where the number of
rows is optimal relative to the number of columns.

3. ZKMLwill use cost estimation to determine the highest
performance layout.

At all steps, ZKML will use heuristics to prune suboptimal
plans.

In the first step, ZKMLwill generate logical circuit layouts,
which specify how individual layers should be implemented
but not the physical instantiation. For example, it may spec-
ify to use an accumulation gadget but not the number of
columns.
In the second step, ZKML will generate physical circuit

layouts, which specify exact grid sizes and layouts.
We show the overall algorithm inAlgorithm 1 and describe

these steps in turn.

7.2 Generating logical layouts

The first step simply generates a candidate list of laying out
individual layers within the circuit. For example, the linear
layers could be implemented with a separate aggregation
constraint or with just the dot product constraint. Similarly,
the squared layer can be implemented with a separate con-
straint or with the multiplication constraint.

An exhaustive enumeration of layer implementationswould
result in exponentially many configurations with the depth
of the neural network. To reduce this, ZKML uses a heuris-
tic pruning method that enforces the same implementation
for every layer per configuration. This is because adding a
constraint is more expensive than adding a column, and the
gains from using separate implementations are rarely worth
the cost of adding a column.

7.3 Generating physical layouts

The second step is for ZKML to generate physical instantia-
tions of the logical layouts. Namely, for each logical layout,
ZKML will generate physical circuit layouts while varying
the number of columns. Because the number of rows must
be 2𝑘 , ZKMLwill only keep the grids with a minimal number
of rows for each 𝑘 (per configuration).

In order to generate grids, we implemented a circuit simu-
lator which produces row-exact simulations of circuits given
a logical layout and number of columns. Using this simulator,
ZKML can exactly compute the number of rows needed at a
given number of columns.

7.4 Cost estimation

Given a set of physical layouts, ZKML will perform cost esti-
mation on the remaining layouts for the giving proving hard-
ware. Performing exact cost estimation is difficult because
many kinds of computational operations are involved in
producing a proof. However, the dominant cost of proof gen-
eration are Fast Fourier Transformations (FFTs) and Multi-
Scalar Multiplications (MSMs). Besides these operations, the
creation of lookup columns and the calculation of quotient
polynomial are the dominant factors in proving time.
As a result, we focus on estimating the costs of these

four operations. The cost of these operations depends on
three factors: the size of the input, the number of times the
operations are done, and the hardware resources available.
For example, much work has been done to accelerate MSMs
on hardware accelerators [17, 29].
For a given proving hardware configuration, ZKML re-

quires costs estimates for: 1) a single FFT of size 2𝑘 for
𝑘 ∈ {18, ..., 30}, 2) a single MSM of size 2𝑘 for 𝑘 ∈ {18, ..., 28},
3) the creation of a lookup table of size 2𝑘 for 𝑘 ∈ {18, ..., 28},
4) the time to perform a single field multiplication and addi-
tion. This is because the existing trusted setup only supports
circuits with at most 228 rows. These estimates need only be
produced once per hardware configuration.

The size of each individual FFT depends both on the max-
imum degree of the custom constraints and the number of
rows. The number of FFTs depends on the number of columns
and copy constraints. We can compute these statistics given
a physical circuit layout. Namely, there are two sizes of FFTs
performed for a given physical circuit layout, so we can

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

estimate the cost as:

𝐶FFT = 𝑛FFT · 𝑡FFT (𝑘) + 𝑛′FFT · 𝑡FFT (𝑘 ′). (1)

Here, 𝑘 is such that the number of rows is 2𝑘 and 𝑘 ′ =

𝑘 + log2 (𝑑max − 1), where 𝑑max is the maximum degree of
the constraints in the circuit. The FFTs corresponding to
𝑛FFT and 𝑛′FFT are for computing the quotient polynomial
in halo2 [45]. Specifically, 𝑛FFT is for converting each col-
umn polynomial/constraint to coefficient form, and 𝑛′FFT is
for converting each column polynomial/constraint to ex-
panded evaluation form. They can be computed from the
number/type of columns in the circuit, which includes the
number of permutation arguments, lookups, and maximum
degree of the custom gates. If we denote the number of in-
stance (public) columns as 𝑁𝑖 , the number of advice (private)
columns as 𝑁𝑎 , the number of lookups as 𝑁lk, and the num-
ber of permutation constraints as 𝑁pm, then the number of
FFTs is

𝑛FFT = 𝑁𝑖 + 𝑁𝑎 + 𝑁lk ∗ 3 +
𝑁pm + 𝑑max − 3

𝑑max − 2
(2)

and 𝑛′FFT = 𝑛FFT + 1, in which the additional one is to trans-
form the overall evaluation form back to the coefficient form.

The size of each individual MSM depends on the number
of rows, and the number of MSMs depends on the number
of columns (including selector columns) and the maximum
degree 𝑑max. Similarly, we can compute these statistics given
a physical circuit layout. The number of MSMs is given by
𝑛FFT + 𝑑max − 1 for the KZG commitment scheme and 𝑛FFT +
𝑑max for the IPA commitment scheme. Compared to FFTs,
the additional terms come from the generation of evaluation
proofs for the quotient polynomial.
Finally, we can estimate the residual cost by estimating

the cost of constructing the lookup tables and assorted field
element operations. Our estimate for the residual cost is
simply the sum of these two estimates.
Given the cost estimates for each of the physical circuit

layouts, ZKML will choose the cheapest layout for proving.

8 Implementation

We implemented ZKML in ˜16,000 lines of Rust and Python
code. The Rust code contains the gadgets, circuit layouter,
and proving aspects. The Python code contains the logic for
the optimizer. We also add semantic-preserving optimiza-
tions to the halo2 proving stack, including optimizing the
lookup constraint creation, parallelization of FFTs, and re-
duced memory requirements.

From a user perspective, there are two stages: optimization
and proving. In the optimization step, the user provides an
ML model specification. Currently, ZKML accepts models in
tflite format; this could easily be extended to other formats
such as onnx.

Models Parameters Flops
GPT-2 81.3M 188.9M
Diffusion 19.5M 22.9B
Twitter 48.1M 96.2M
DLRM 764.3K 1.9M
MobileNet (ImageNet) 3.5M 601.8M
ResNet-18 (CIFAR-10) 280.9K 81.9M
VGG16 (CIFAR-10) 15.2M 627.9M
MNIST 8.1K 444.9K

Table 5. List of models considered in the evaluation.

Given the ML model specification, ZKML will pick the
appropriate set of gadgets and physical layout with its opti-
mizer. The optimizer will produce the optimal gadgets and
layout. It will also produce the proving key and verification
key, which is specific to the model. Then, to produce a proof,
the user must also supply the input.

In order to verify a proof, the user must provide the model
configuration (but not the weights), the verifying key, the
proof, and public values. Currently, the verifier is imple-
mented as a standalone binary, but could also be imple-
mented in wasm or other frameworks.
Our code is available at https://github.com/uiuc-kang-

lab/zkml.

9 Evaluation

We evaluate ZKML on a wide range of modern ML mod-
els, spanning language models, CNNs, and recommendation
system models. Our results show that ZKML is able to ZK-
SNARK a wider range of models than prior work. Finally, we
show that all components of ZKML are necessary for high
performance.

9.1 Experimental Setup

In our evaluation, we consider the following models:
1. GPT-2: a distilled GPT-2 optimized for inference [39].
2. Diffusion: a small latent text-to-image Stable diffusion

model [37].
3. Twitter: MaskNet in the Twitter recommendation sys-

tem [43].
4. DLRM: a deep recommender proposed by Facebook

research [32] and used by MLPerf [36].
5. MobileNet: a MobileNet v2 trained on ImageNet [38].

We used the "1.0, 224" configuration that has an expan-
sion factor of 1.0 and an input resolution of 224.

6. ResNet-18: ResNet-18 on CIFAR-10 [14].
7. VGG-16: VGG-16 on CIFAR-10 [41].
8. MNIST: A CNN on MNIST optimized for accuracy [1].

We show the number of parameters and the flops for each
model in Table 5.
In choosing the models in the evaluation, we note an im-

portant feature of ML models: performance is dependent on

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

Model Proving time (KZG) Verification time (KZG) Proof size (KZG)
GPT-2 3651.67 s 18.70 s 28128 bytes
Diffusion 3600.57 s 92.78 ms 28704 bytes
Twitter 358.7 s 22.41 ms 6816 bytes
DLRM 34.4 s 12.26 ms 18816 bytes
MobileNet 1225.5 s 17.67 ms 17664 bytes
ResNet-18 52.9 s 11.84 ms 15744 bytes
VGG16 637.14 s 9.62 ms 12064 bytes
MNIST 2.45 s 6.69 ms 6560 bytes

Table 6. End-to-end proving time for a variety of models when using the ZKML KZG backend.

Model Proving time (IPA) Verification time (IPA) Proof size (IPA)
GPT-2 3949.60 s 11.98 s 16512 bytes
Diffusion 3658.77 s 5.17 s 30464 bytes
Twitter 364.9 s 2.28 s 8448 bytes
DLRM 30.0 s 0.11 s 18816 bytes
MobileNet 1217.6 s 3.34 s 19360 bytes
ResNet-18 46.5 s 0.20 s 17120 bytes
VGG16 619.4 s 2.49 s 17184 bytes
MNIST 2.36 s 22.26 ms 7680 bytes

Table 7. End-to-end proving time for a variety of models when using the ZKML IPA backend.

a large number of factors. These factors include the archi-
tecture, amenability to quantization, and others. Due to the
flexibility of ZKML, we are able to ZK-SNARK a wider range
of models. Prior work focuses on older, outdated models
such as VGG-16, which are inefficient in terms of accuracy,
ML statistical efficiency, and ZK-SNARK proving time. In-
stead, we focus on modern models, such as ResNet-18, which
achieve higher accuracy and faster proving. As a result, we
focus on a key metric of proving time at a given accuracy
level.

For consistent benchmarks, we use the r6i.8xlargeAWS
EC2 instance type for all models except MobileNet, Diffu-
sion, and GPT-2. We use the r6i.16xlarge instance for Mo-
bileNet, and the r6i.32xlarge for GPT-2 and Diffusion due
to memory overheads. The r6i.8xlarge instance has 32
vCPU cores (threads) and 256GB of RAM. The r6i.16xlarge
instance has 64 vCPU cores (threads) and 512 GB of RAM.
The r6i.32xlarge has 128 vCPU cores and 1 TB of RAM.

9.2 End-to-End Numbers

ZKML proves on awider range ofmodels. For themodels
described in Section 9.1, we measure the latency of proving
for each model on AWS EC2 instances. We show results in
Table 6 for the KZG backend and Table 7 for the IPA backend.
As we show, ZKML can prove model types beyond prior
work, including real-world models used in recommendation
systems, ResNets, and even a distilled GPT-2. The proving
time can be as low as 2.5s. The largest model we consider,
GPT-2, can be proven in about an hour. In contrast, some

Model FP32 Accuracy ZKML Accuracy Difference
MNIST 99.06% 99.06% 0%
VGG16 90.36% 90.37% + 0.01%
ResNet-18 91.88% 91.87% -0.01%

Table 8. Accuracy of ZKML compared to the base FP32
models.

prior work can take over an hour to prove small models on
CIFAR-10.

We also show the latency of verification and the proof size
in the above tables. As shown, IPA usually has a larger proof
size and higher verification time compared to KZG. KZG
has faster verification as it only requires a single pairing
check, while IPA needs to perform 𝑂 (𝑛) group operations
for verification. IPA generally has faster proving times for
small number of rows since the field operations are slightly
more efficient than KZG, but slower for larger models since
the extra MSM offsets the initial efficiency gains.

Accuracy. Another important part of ZK-SNARK proving is
the resulting accuracy. Because the arithmetization changes
the output result because of quantization, it is possible that
the accuracy changes. To test this, we computed the accuracy
of the three vision models (the other models did not have
classification benchmarks).We show results in Table 8. As we
can see, the accuracy drops by at most 0.01%. In comparison,
high-quality quantization is typically measured within 0.1%
accuracy [15, 16, 46], or 20× higher.

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

ZKML (ResNet-18) ZKML (VGG-16) zkCNN vCNN
Accuracy 91.9% 90.4% 90.3% 90.4%*
Proving time 52.9 s 584.1 s 88.3 s 31 hours*
Verfication time 12 ms 16 ms 59 ms 20 seconds
Proof size 15.3 kB 12.1 kB 341 kB 0.34 kB

Table 9. ZKML compared to zkCNN [27] and vCNN [26] on proving time, verification time, and proof size. ZKML outperforms
on all metrics except proof size. The proving time for vCNN was estimated by [27]. The accuracy of vCNN is estimated from
the float-point accuracy, as the paper does not discuss accuracy.

Model Proving time (ZKML) Proving time (fixed) Improvement
GPT2 3651.7 s 5952.0 s 63%
Diffusion 3600.6 s 4989.7 s 39%
Twitter 358.7 s 464.0 s 29%
DLRM 34.4 s 42.4 s 23%
MobileNet 1225.5 s 2407.8 s 96%
ResNet-18 52.9 s 74.8 s 41%
VGG16 637.1 s 1474.0 s 131%
MNIST 2.5 s 4.4 s 76%

Table 10. Proving times of ZKML and ZKML with a fixed configuration. As shown, ZKML’s optimizer can improve proving
times by nearly 2.5× compared to a fixed configuration.

Comparison to prior work. Finally, we compare ZKML to
prior work on CNNs. We compare the numbers as presented
by zkCNN [27] and vCNN [26] compared to ZKML on the
same dataset but with performance-optimized models in
addition to VGG-16. Namely, the ResNet-18 we consider
achieves higher accuracy than the VGG-16 zkCNN considers.
To estimate the cost of proving for prior work, we match
the hardware setup used in the prior work as closely as
possible. We show comparisons on CIFAR-10 in Table 9. As
shown, ZKML is able to achieve faster proving times, 5×
faster verification times, and 22× smaller proofs compared
to zkCNN. The proving time of 31 hours for vCNN was
estimated by [27].

9.3 Ablation Studies

To understand the performance of ZKML, we performed an
ablation study. In our first ablation study, we fixed a number
of advice columns for all models and considered the objective
of optimizing proving time for KZG. The largest model we
consider, GPT-2, requires 40 columns to fit within 226 rows
(the largest size that can prove in under 1TB of RAM for the
KZG version of ZKML). As such, we picked the minimum
number of rows for each model with 40 columns. Recall that
the number of rows must be a power of two. Finally, since
GPT-2 requires 40 columns (for our maximum of using 1TB
of RAM), we excluded GPT-2 from this experiment.

We show the proving times for ZKML and for fixed config-
urations in Table 10. As shown, ZKML can improve proving
times by almost 2× compared to using a fixed configuration.
One major reason why this is the case is that the number

of rows is fixed to a power of two. Even a single extra row
over a power of two would cause the proving time to nearly
double.
We then conducted an experiment in which we removed

the different implementations of gadgets so that each layer
only had a fixed implementation. We kept the optimizer to
choose the optimal layout. We show the results in Table 11.
As shown, the proving time can increase by up to 24× with
a fixed set of gadgets.

9.4 Optimizer Savings

Time savings. We investigated whether or not ZKML’s
optimizers helped in reducing the time needed to choose the
optimal configuration. To do so, we measured the end-to-end
time for our optimizer to run compared to the time to exhaus-
tively benchmark proofs for the different configurations.
The runtime for our optimizer on the MNIST model was

6.3 seconds for the KZG backend and 6.3 seconds for the IPA
backend. In contrast, the time to exhaustively benchmark
proofs was 3622 seconds for the KZG backend and 3092
seconds for the IPA backend. Our optimizer is 575× faster
for KZG and 491× faster for IPA, even for our smallest model.
We further estimated the time to do exhaustive bench-

marking for GPT-2 (our largest model) compared to execut-
ing ZKML’s optimizer for the KZG backend. ZKML’s opti-
mizer took 185.3 seconds compared to an estimated 1,078,449
seconds for exhaustive benchmarking for GPT-2. Our opti-
mizer is an estimated 5900× faster compared to exhaustive
benchmarking. Furthermore, as seen, as the models increase
in size, the cost savings also increase.

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

Model Proving time (ZKML) Proving time (no extra) Improvement
MNIST 2.5 s 6.2 s 148%
DLRM 34.4 s 859.5 s 2399%
ResNet-18 52.9 s 812.6 s 1436%

Table 11. Proving times of ZKML and ZKML with a fixed set of gadgets. As shown, the additional gadgets can have an
enormous impact on performance, leading to slowdowns of up to 24×.

Model Pruned runtime Non-pruned runtime
MNST 6.3 s 9.0 s
ResNet-18 28.1 s 77.5 s
GPT-2 185.3 s 277.2

Table 12. Optimizer runtime with and without pruning for
three models. As shown, pruning can significantly reduce
optimizer runtime. The same end configuration was used in
all cases with and without pruning.

Condition Proving time
Single-row 18.55 s
Multi-row adder 18.59 s
Multi-row max 18.58 s
Multi-row dot 18.58 s

Table 13. Proving time of models with single-row gadgets
vs multi-row gadgets.

Finally, we compared our optimizer with the optimizer
without pruning plans. For simplicity, we tested on three
models: MNIST, ResNet-18, and GPT-2. We show the opti-
mizer runtime in Table 12. In all cases, our optimizer found
the same plan as the optimizer without pruning, so the prov-
ing time is the same for both. As shown, the optimizer run-
time can decrease by as much as 2.8× with pruning.

Single-row vs multi-row constraints. We further com-
pared ZKML’s use of single-row vs multi-row constraints.
To study this, we measured the performance of a fixed model
when using single-row constraints vs multi-row constraints.
We constructed a model that uses the adder chip, the max
chip, and the dot product chip. We further fixed the circuit
size to 10 columns for fairness.

We show results in Table 13. In fact, multi-row constraints
induce an overhead of up to 2.2% for the proving time, show-
ing that using single-row constraints does not significantly
affect runtime.

Case studies. As a first case study, consider the GPT-2
model. Our optimizer chooses 225 rows and 13 columns for
KZG, and 224 rows and 25 columns for IPA. As we see, the
optimal configuration depends on the hardware and backend.
As a second case study, consider the case of optimizing

for proof size instead of proving time. Users may want to
minimize proof size when storing large numbers of proofs or

Runtime-optimized Size-optimized
Model Time Size Time Size
MNIST 2.45 s 6560 bytes 2.97 s 4800 bytes
VGG-16 637.14 s 12064 bytes 819.8 s 7680 bytes
ResNet-18 52.9 s 15744 bytes 87.3 s 6112 bytes
Twitter 358.7 s 6816 bytes 544.8 s 5056 bytes
DLRM 34.4 s 18816 bytes 42.2 s 6368 bytes

Table 14. Proving time and proof size of runtime and size
optimized ZK-SNARKs.

using proofs on the blockchain, where storage is expensive.
To minimize the proof size, we can minimize the number
of columns (which is 10 for our gadgets). We measured the
proving time and proof size for our five smallest models with
results shown in Table 14. As shown, ZKML can optimize
for both proving time and proof size.

9.5 Cost Estimation Accuracy

Finally, we measured the accuracy of our cost estimator.
For the purposes of choosing a physical layout, the most
important factor is that the highest performance layout is
the top ranked layout. Because benchmarking all possible
physical layouts is extremely expensive for the larger models,
we conducted all experiments on the MNIST model.

For the MNIST model, the top ranked physical layout for
both the KZG and IPA backends achieved the lowest proving
time. Furthermore, we measured Kendall’s rank correlation
coefficient between our cost estimates and the true proving
time. The rank correlation is 0.89 for KZG and 0.88 for IPA,
showing that our cost estimator accurately ranks physical
layouts.

10 Related Work

ZK-SNARKs for ML. All prior work for ZK-SNARKs for
ML focuses on producing proofs for convolutional neural
networks (CNNs) [10, 19, 26, 44]. The majority of this work
focuses on custom cryptographic arguments for ZK-SNARKs.
There are two major drawbacks with this approach. First,
none of this work supports other forms of DNNs, including
LLMs or DNNs used in recommender systems. Second, this
work does not take advantage of new work on faster ZK-
SNARK proving systems. ZKML addresses both of these
issues by leveraging recent work to produce general-purpose

EuroSys ’24, April 22–25, 2024, Athens, Greece Chen et al.

circuits for a wide range of DNNs. Furthermore, it is more
efficient than all prior work.

MPC for ML. Other work in secure ML focuses on multi-
party computation (MPC) for ML [22, 24, 25, 31]. MPC re-
quires all parties to be online during the duration of the
computation and does not provide validity of the computa-
tion to third parties. Furthermore, the majority of work on
MPC for ML focuses on the semi-honest adversary setting,
where all parties adhere to the protocol. In many circum-
stances (e.g., for audits, smart contracts, and other situations),
the participating parties desire security against malicious
adversaries. The work on MPC against malicious adversaries
is typically substantially more computationally and network
bandwidth-intensive.

HE for ML. Homomorphic encryption allows parties to
perform computations on encrypted data without first de-
crypting the data [2]. This allows for offloading computation
in a privacy-preserving manner. However, HE does not sat-
isfy the auditability requirements for the applications we
consider. Furthermore, HE is extremely computationally ex-
pensive, scaling only to impractically small datasets (MNIST
and CIFAR10) [18, 28].

11 Conclusions

In this work, we design and implement ZKML, an optimizing
compiler for ML models to ZK-SNARKs. ZKML can produce
ZK-SNARKs of substantially moreMLmodel types than prior
work, including important classes of models such as LLMs
and recommendation systems. We introduce a framework
for optimizing circuit layout for ML models in ZK-SNARK
proving systems. To the best of our knowledge, ZKML is
the first optimizing compiler for ML model inference to ZK-
SNARKs. Our optimizations result in up to 24× improved
proving speeds. We hope that ZKML will serve as a platform
for transparency in ML systems in the future.

References

[1] 2023. The minimal neural network that achieves 99% on MNIST.
https://github.com/ruslangrimov/mnist-minimal-mnistmodel

[2] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen,
Angela Jäschke, Christian A Reuter, and Martin Strand. 2015. A guide
to fully homomorphic encryption. Cryptology ePrint Archive (2015).

[3] Karissa Bell. 2023. What did Twitter’s ‘open source’ algorithm actually
reveal? Not a lot. Engadget (2023). https://www.engadget.com/what-
did-twitters-open-source-algorithm-actually-reveal-not-a-lot-
194652809.html

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
2018. Scalable, transparent, and post-quantum secure computa-
tional integrity. Cryptology ePrint Archive, Paper 2018/046. https:
//eprint.iacr.org/2018/046 https://eprint.iacr.org/2018/046.

[5] Stan Benjamens, Pranavsingh Dhunnoo, and Bertalan Meskó. 2020.
The state of artificial intelligence-based FDA-approved medical devices
and algorithms: an online database. NPJ digital medicine 3, 1 (2020),
118.

[6] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. 2017. The hunting of the

SNARK. Journal of Cryptology 30, 4 (2017), 989–1066.
[7] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi

Vesely. 2021. Proofs for inner pairing products and applications. In
Advances in Cryptology–ASIACRYPT 2021: 27th International Conference
on the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part III 27. Springer, 65–
97.

[8] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019.
Behavior sequence transformer for e-commerce recommendation in al-
ibaba. In Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data. 1–4.

[9] Akshay Dua, Nirupama Bulusu, Wu-Chang Feng, and Wen Hu. 2009.
Towards trustworthy participatory sensing. In Proceedings of the 4th
USENIX Conference on Hot Topics in Security. USENIX Association
Berkeley, CA, USA, 8–8.

[10] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu.
2021. ZEN: An optimizing compiler for verifiable, zero-knowledge
neural network inferences. Cryptology ePrint Archive (2021).

[11] Rusins Freivalds. 1977. Probabilistic Machines Can Use Less Running
Time.. In IFIP congress, Vol. 839. 842.

[12] Ariel Gabizon. 2021. From AIRs to RAPs - how PLONK-style
arithmetization works. https://hackmd.io/@aztec-network/plonk-
arithmetiization-air. (2021). https://hackmd.io/@aztec-network/
plonk-arithmetiization-air

[13] Peter Gilbert, Landon P Cox, Jaeyeon Jung, and David Wetherall. 2010.
Toward trustworthy mobile sensing. In Proceedings of the Eleventh
Workshop on Mobile Computing Systems & Applications. 31–36.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Iden-
tity mappings in deep residual networks. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part IV 14. Springer, 630–645.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2017. Quantized neural networks: training neural
networks with low precision weights and activations. J. Mach. Learn.
Res. (2017), 6869–6898.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko.
2017. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2017), 2704–2713.

[17] Kimmo Järvinen, Andrea Miele, Reza Azarderakhsh, and Patrick Longa.
2016. Four on FPGA: New Hardware Speed Records for Elliptic Curve
Cryptography over Large Prime Characteristic Fields. In Cryptographic
Hardware and Embedded Systems–CHES 2016: 18th International Confer-
ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. Springer,
517–537.

[18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
2018. {GAZELLE}: A low latency framework for secure neural net-
work inference. In 27th USENIX Security Symposium (USENIX Security
18). 1651–1669.

[19] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. 2022. Scal-
ing up Trustless DNN Inference with Zero-Knowledge Proofs. arXiv
preprint arXiv:2210.08674 (2022).

[20] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-
size commitments to polynomials and their applications. In Advances
in Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singa-
pore, December 5-9, 2010. Proceedings 16. Springer, 177–194.

[21] Will Knight. 2023. OpenAI’s CEO Says the Age of Giant AI Models Is
Already Over. https://www.wired.com/story/openai-ceo-sam-altman-
the-age-of-giant-ai-models-is-already-over/

[22] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta,
Mark Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure
multi-party computation meets machine learning. Advances in Neural

ZKML: An Optimizing System for ML Inference in Zero-Knowledge Proofs EuroSys ’24, April 22–25, 2024, Athens, Greece

Information Processing Systems 34 (2021), 4961–4973.
[23] Joshua Alexander Kroll. 2015. Accountable algorithms. Ph. D. Disserta-

tion. Princeton University.
[24] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,

Aseem Rastogi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow
inference. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
336–353.

[25] Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon
Wei, and David Brooks. 2022. Tabula: Efficiently Computing Nonlinear
Activation Functions for Secure Neural Network Inference. arXiv
preprint arXiv:2203.02833 (2022).

[26] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN:
Verifiable convolutional neural network based on zk-SNARKs. Cryp-
tology ePrint Archive (2020).

[27] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. ZkCNN: Zero knowl-
edge proofs for convolutional neural network predictions and accuracy.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 2968–2985.

[28] Qian Lou and Lei Jiang. 2021. Hemet: A homomorphic-encryption-
friendly privacy-preserving mobile neural network architecture. In
International conference on machine learning. PMLR, 7102–7110.

[29] Tao Lu, Chengkun Wei, Ruijing Yu, Chaochao Chen, Wenjing Fang,
Lei Wang, Zeke Wang, and Wenzhi Chen. 2022. Cuzk: Accelerating
zero-knowledge proof with a faster parallel multi-scalar multiplication
algorithm on gpus. Cryptology ePrint Archive (2022).

[30] James McGirk. 2023. The State of Zero-Knowledge Machine Learn-
ing (zkML). (2023). https://blog.spectral.finance/the-state-of-zero-
knowledge-machine-learning-zkml/

[31] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. 2020. Delphi: A cryptographic infer-
ence service for neural networks. In 29th USENIX Security Symposium
(USENIX Security 20). 2505–2522.

[32] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learn-
ing recommendation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091 (2019).

[33] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, et al. 2022. Training language models to follow
instructions with human feedback. Advances in Neural Information
Processing Systems 35 (2022), 27730–27744.

[34] Mark Pesce. 2023. It’s time to reveal all recommendation algorithms
– by law if necessary. The Register (2023). https://www.theregister.
com/2023/04/13/reveal_all_recommendation_algorithms/

[35] PSE. 2023. Perpetual Powers of Tau. https://github.com/privacy-
scaling-explorations/perpetualpowersoftau

[36] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, et al. 2020. Mlperf inference
benchmark. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 446–459.

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. 2022. High-Resolution Image Synthesis With La-
tent Diffusion Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4510–4520.

[39] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. In NeurIPS EMC2̂ Workshop.

[40] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese,
Natalie Dullerud, Sébastien Gambs, Nicolas Papernot, Xiao Wang, and
Adrian Weller. 2022. Confidential-PROFITT: Confidential PROof of
FaIr Training of Trees. In The Eleventh International Conference on
Learning Representations.

[41] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

[42] Justin Thaler et al. 2022. Proofs, arguments, and zero-knowledge.
Foundations and Trends® in Privacy and Security 4, 2–4 (2022), 117–
660.

[43] Twitter. 2023. Twitter’s Recommendation Algorithm. (2023).
https://blog.twitter.com/engineering/en_us/topics/open-
source/2023/twitter-recommendation-algorithm

[44] Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan
Liu. 2022. pvCNN: Privacy-Preserving and Verifiable Convolutional
Neural Network Testing. arXiv preprint arXiv:2201.09186 (2022).

[45] zcash. 2022. halo2. https://zcash.github.io/halo2/
[46] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018.

LQ-Nets: Learned Quantization for Highly Accurate and Compact
Deep Neural Networks. In European Conference on Computer Vision
(ECCV).

[47] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. 2017. vSQL: Verifying arbitrary SQL
queries over dynamic outsourced databases. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 863–880.

