
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Data Management for ML-based Analytics and Beyond

DANIEL KANG, Stanford University, USA

JOHN GUIBAS, Stanford University, USA

PETER BAILIS, Stanford University, USA

TATSUNORI HASHIMOTO, Stanford University, USA

YI SUN, University of Chicago, USA

MATEI ZAHARIA, Stanford University, USA

The increasing capabilities of machine learning (ML) has enabled the deployment of ML methods in a variety

of applications, ranging from unstructured data analytics to autonomous vehicles. Due to the volumes of data

ML is deployed over, it is infeasible for humans to monitor deployments: the Tesla fleet of vehicles produces

exabytes of data and millions of hours of video per day. As a result, ML deployments can fail in unexpected

and catastrophic ways.

In this work, we highlight three important, but underlooked aspects of ML deployment pipelines: 1)

managing high-quality training data, 2) monitoring ML errors at deployment time, and 3) connecting end use

to deployment algorithms. We first demonstrate that training labels are often erroneous, contrary to standard

practice, even when labeled by leading vendors. We then demonstrate that standard methods of deploying

ML methods can lead to downstream errors. As a first step towards addressing these issues, we review and

contextualize two abstractions for finding errors in training data and deployments. We further describe how

to improve algorithms for analytics queries as a case study for optimizing ML pipelines end-to-end.

1 INTRODUCTION
The applications of machine learning (ML) have only expanded as more capable models and

algorithms have been created. As ML improves in capabilities, it is deployed on more volumes of

data and for more tasks. For example, ML is being used in applications ranging from autonomous

vehicles, detecting hummingbirds in videos to study microcosms [26], and find novel earthquakes

[45]. These applications produce large volumes of data: a single autonomous vehicle can produce

over 4 TB of data in a day and ∼200 days worth of ecological video is ∼9 TB.
Due to the nature of ML-based deployments, it is infeasible for human to exhaustively monitor

this data (limited “human attention”) [5]: the Tesla fleet of vehicles sees more data per day than the

largest labeled image dataset.
1
As a result, ML is increasingly being deployed where only a small

fraction of the data could possibly be monitored.

As a result, ML-based deployments have already been involved in negative outcomes, including

severe accidents such as autonomous vehicles striking pedestrians [22]. Beyond autonomous

vehicles, ML models have also been involved in confidently overestimating flu case counts [35],

have failed to generalize in network congestion control algorithms [52], have failed to generalize

in predicting unemployment claims from Twitter data [3], etc. These errors are not limited to

resource-constrained organizations: Google, Uber, and other organizations have been involved

with such errors [22, 35].

To address these issues, the ML and systems community has largely focused on three areas:

increasing model capacity [17, 18, 23], improved training methods [13, 14, 50], and validation

methods (e.g., statistical validation or “verification”) [40, 51]. For example, on the model front,

recent work on transformers have not only revolutionized natural language processing, but also

1
Tesla has produced over 1.9M vehicles [16]. Assuming each vehicle drives even an hour a day, the fleet will produce 6.8B

images at one frame per second, both of which are gross underestimates. The largest labeled image dataset is 300M images

[49].

Manuscript submitted to ACM/IMS Journal of Data Science. Do not distribute.

Data Management for ML-based Analytics and Beyond2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2

Data
curation

Model
validation

Model
training

Model
inferenceData QA Model

monitoring

Fig. 1. Steps present in most ML deployments. Most of the literature focuses on model training, validation,

and inference. Furthermore, most of the data assumes the pipeline is fixed, as opposed to ongoing. We argue

for the importance of the underlooked components of the ML deployment pipeline: data curation, data

quality assurance, and model monitoring.

(a) Unrealistic predicted boxes overlapping.
(b) Correctly predicted

frame

(𝑡 = 0).

(c) Incorrectly predicted

frame immediately adja-

cent to the correctly pre-

dicted frame (𝑡 = 1).

Fig. 2. Examples of errors from SSD deployed on a street camera video. These errors are easily specified by

domain experts. Taken from Kang et al. [32].

have shown great progress on vision tasks with potential for improved semantic understanding

of images [17, 18, 23]. On the training front, work on self- and semi-supervised learning have the

potential to allow understanding of large datasets with few labels [13, 14, 50]. On the validation

front, work aims to catch overflow errors at training time [40], “verify” that neural networks satisfy

certain properties [51], etc.

Unfortunately, the ML deployment stack has steps beyond training ML models that have been

understudied: monitoring deployed ML models, the curation of high-quality training data, and

directly leveraging end use cases to ML models. We show a typical ML model deployment stack in

Figure 1. Much of existing work focuses on the training, validation, and inference stages, with little

work on the remaining stages.

In this work, we argue for the importance of the ML deployment stack beyond training, vali-

dation, and inference. In particular, we argue for the importance of monitoring, vetting/curating

training data, and end-to-end optimization of ML deployments. We describe our experience in ML

deployments and highlight areas that have been neglected in existing work. We then review and

extend work to address these areas.

Monitoring ML deployments. We first show that common methods of deploying ML methods

can lead to large downstream errors, e.g., in aggregation query results. As an example, a common

method of performing analytics over unstructured data is to deploy a pre-trained model on a new

dataset. Consider deploying SSD [37], a single-shot object detector, pre-trained on MS-COCO [36]

for traffic analysis. We deployed SSD on a commonly-studied traffic dataset denoted night-street
[25, 27, 29]. As shown in Figure 2, SSD makes a numerous errors, despite the camera being in a fixed

position. The literature has many more examples of such discrepancies: simple transformations of

images can cause errors [4]. As a result, we argue it is critical to monitor ML models at deployment

time.

Data Management for ML-based Analytics and Beyond3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3

(a) Example of missing vehicles within 25m of the

autonomous vehicle.

(b) Example of missing vehicles inmotion close

to the autonomous vehicle.

Fig. 3. Examples of errors from the publicly available Lyft Level 5 dataset. This dataset was produced by a

leading labeling vendor. Taken from Kang et al. [24].

To begin to monitor ML deployments, we review and extend model assertions [32]. Model

assertions are opaque functions that allow domain experts to specify when errors may be occurring.

For example, a traffic analyst can specify that cars should not appear and disappear too rapidly

in video. We review how model assertions can be used and extend its results to other domains,

including for tabular data.

Curation and vetting of high-quality training data. We then show that the common practice

of assuming human labels are correct is in fact flawed. A number of publicly available datasets

contain egregious errors, including datasets used to train autonomous vehicles. We show several

examples of errors from the Lyft Level 5 perception dataset [33], which has been used to host

competitions [48] and develop models [53], in Figure 3. While seemingly simple, similar errors

were involved in Uber’s fatal autonomous vehicle incident: “[a]s the [automated driving system]

changed the classification of the pedestrian several times–alternating between vehicle, bicycle,

and an other–the system was unable to correctly predict the path of the detected object” [22],

highlighting the need to avoid such errors. Furthermore, the utility of a given additional training

data item varies greatly depending on the applications [26, 32].

To address the quality and utility of training data, we first describe learned observation assertions

(LOA), which aids users in determining when training data may contain errors. LOA leverages

existing training data and existing ML models to highlight such errors. We further describe how

model assertions and LOA can be used to select training data more efficiently than standard methods

of selecting training data.

Guaranteeing performance. Finally, we show a range of methods for analytics deployments can

catastrophically fail, ranging from selection to aggregation queries. For example, when selecting

rare events with a recall target of 90%, common methods of selection can return sets with recalls

below 20%. Furthermore, methods for accelerating aggregation queries, when naively applied, can

return higher errors while simultaneously being slower than alternative methods. These errors are

particularly problematic for scientific analyses or for decision making, as these methods also do

not specify their errors.

To address the issues that arise in analytics, we describe and contextualize methods for achieving

statistical guarantees on query accuracy. These methods largely leverage sampling. However, in

contrast to standard AQP, the fields to be aggregated on are not present ahead of time, so standard

indexing/preprocessing methods cannot be used. We describe challenges that arise in this setting

and methods to address this issue.

Data Management for ML-based Analytics and Beyond4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4

Component interface Description

Train(ModelArchitecture, TrainingData, TrainingAlgorithm) -> TrainedModel Model training

Validation(TrainedModel, ValidationData, ValidationAlgorithm) -> Statistics Model validation

Inference(TrainedModel, UnseenData) -> StructuredOutputs Executing a trained model

EndUse(StructuredOutputs, UnseenData) -> Action | Analysis Use in the end use case

Curation(TrainedModel, StructuredOutputs, UnseenData) -> LabeledData Curation of training data

Table 1. Example interfaces for various aspects of the ML deployment as described in Figure 1. As shown,

many ML models produce structured outputs, which are subsequently consumed for downstream tasks.

Additionally, many components have well defined interfaces, which allow teams of engineers, data scientists,

and domain experts to work together.

In the remainder of the paper, we describe methods for monitoring ML deployments at inference

time, curation and quality control of ML data, and an example of optimizing end-to-end ML

deployments for analytics. Throughout, we specify when results are novel to this work.

2 BACKGROUND
In this section, we outline the ML deployment stack. Our description is generated from a range of

industry collaborations and conversations, our own experiences in deploying ML models, and the

literature. Our collaborators include large autonomous vehicle organizations, ML model providers

partnering with numerous Fortune 500 companies, scientists, and others. We additionally highlight

differences between our observations and standard academic practice.

2.1 Overview
ML deployments vary widely in end use case and resources. Their use cases range from ana-

lyzing video to study hummingbird feeding patterns, finding earthquakes, and driving vehicles

autonomously. Organizations that deploy ML range from single individuals with no coding experi-

ence to hundreds of engineers with years of experience. As a result, these deployments vary widely.

Nonetheless, we aim to outline common properties of these deployments.

All ML deployments we are aware of contain a subset of the following: training models, validating

models, deployment/inference in its end use case, and the curation of training data. We describe

each step in detail below.

As different individuals and teams have specific concerns, we outline interfaces of different parts

of the ML deployment stack. At large organizations, each part has one or more teams dedicated to

optimizing that part of the stack. Even for individuals or smaller teams, different parts are often

out-sourced (e.g., AutoML for training).

We describe the interfaces in Table 1. Much of existing work has focused on Train, Validation,
and Inference, with less work on the remaining parts. In many ML deployments, a large number

of models are trained and deployed. We describe the interfaces for a single model, although models

are sometimes jointly trained.

An important feature we highlight is that ML models are often used to take unstructured data
(e.g., text, video, images, audio) to structured outputs. Unstructured data is often difficult and

computationally intensive to process. In contrast, structured outputs are much simpler to process.

We note that a number of deployments do not fall under this setting (e.g., generation).

2.2 Training
The first step of ML model deployment is training a model. In this step, training algorithm takes

a model architecture and training data as input and outputs a trained model. The most common

Data Management for ML-based Analytics and Beyond5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5

training algorithm is stochastic gradient descent (SGD). We highlight popular model architectures

for common tasks/modalities:

(1) BERT/GPT-based architectures are most commonly used for tasks over text (e.g., sentiment

analysis, topic classification, etc.).

(2) Convolution-based architectures (e.g., ResNet) are most commonly used for image classifica-

tion.

(3) RCNN (e.g., Mask R-CNN, Faster R-CNN) or single-shot (e.g., SSD, YOLO) backbones with

convolutional backbones are most commonly used for object detection.

A large body of existing work focuses on improving training algorithms and model architectures.

2.3 Validation
Given a trained ML model, the next step is to validate the model. In this step, data (ideally) unseen

at training time and reflective of deployment is used to produce statistics about the model. The

most common method is to produce an average validation statistic over the dataset, such as the

mean accuracy for classification or mean average precision for object detection. New models are

typically not deployed unless a majority of validation metrics have improved.

An emerging body of work is demonstrating the dangers of using a fixed validation set. Even

leading experts in ML funded by industry titans can be prone to such errors. For example, Google

flu trends worked well on in-distribution data, but catastrophically failed when deployed in the

wild [35]. These errors are wide ranging: experts in network congestion control algorithms [52] to

flu predictions by Google [35] have also encountered similar issues.

As a result, we believe it is critical to collect data in an ongoing manner to ensure that validation

results still hold. This is in stark contrast to the literature that measures model performance on

fixed validation sets.

2.4 Inference and End Use
Once a model is validated, it is deployed for its end use.

Inference. One key aspect of this process is model inference. In model inference, the set of inputs

is transformed into a “useful” output. This is most commonly a structured output(s). For example:

(1) Sentiment analysis transforms unstructured text to a sentiment (e.g., positive or negative).

(2) Object detection transforms unstructured images to a set of boxes and object categories.

While seemingly obvious, this distinction is critical for a range of techniques to monitor ML model

deployments.

Much work in the systems and ML communities focuses on improving inference performance

[11, 15, 31, 43]. For example, the MLPerf inference benchmark measures the throughput and latency

of accelerators on a range of tasks [43]. While important, improvements to inference do not always

translate to improvements to the end use.

End use. Once the outputs of the model are generated they are then used for some end use case.

In this work, we focus on models that produce structured outputs. A range of generative tasks (e.g.,

image editing, chatbots) do not produce structured outputs, which we do not focus on in this work.

The structured outputs are used to take actions or perform analyses. For example, they can be

used to decide on control actions for an autonomous vehicle. They can also be used to do business

analytics, e.g., analyzing which customers are most likely to churn.

ML deployments are also increasingly being used in scientific analyses. These analyses often

have strict requirements on accuracy with respect to ground truth. In particular, validation accuracy

does not provide any guarantees on accuracy on the deployed data, as we describe above.

Data Management for ML-based Analytics and Beyond6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6

2.5 Curation of Training Data
A critical part of many ML deployments is the ongoing curation of high quality training (and

validation) data. Many ML deployments are constantly exposed to new types of data, so require

new training data to adapt to new scenarios. For example, the Tesla Cybertruck is visually distinct

from older trucks. The failure of Google flu trends to generalize across years also demonstrates the

importance of ongoing curation of training data. We highlight two aspects of training data curation

of importance.

The first is that training data curation is an ongoing process for many organizations. In particular,

datasets and ML deployments are not static, so organizations must collect new data. This is of

particular importance to safety-critical ML deployments (e.g., autonomous vehicles).

The second is that training data must be high quality and high value. In contrast to a large body of

work that assumes given labels are correct, real-world labels vary widely in accuracy. For example,

the Lyft Level 5 Perception dataset is rife with errors. We show examples of missing vehicles in

Figure 3. Furthermore, the marginal value of data varies greatly depending on the end task, which

we highlight in Section 4.

2.6 Examples
We provide two examples of end-to-end ML deployments.

Autonomous vehicles. Autonomous vehicles deploy a number of ML models in the vehicle. In

this example, we focus on LIDAR perception models, which are used to detect 3D boxes of objects

(vehicles, pedestrians, etc.). The primary goal of the model builders and team is to create a model

that results in no accidents. As this objective is difficult to measure, a common goal is to create a

model as accurate as possible. We contrast this goal with the goal of the ecological analysis use

case below.

Teams of ML researchers focus on developing new models and training algorithms for 3D LIDAR

detection. The state-of-the-art has progressed from 44.9 NDS [34] to 75.0 NDS [38] on the nuScenes

dataset [12], a remarkable increase in performance in only two years. Given trained models, they

are evaluated on a held out set of data, which is separate from the training set. The most common

metric for 3D box detection is mean average precision (mAP).

If the model is suitable for deployment, then it is deployed in the car, where it sees new data.

Due to the large volumes of data, it is infeasible to even store all of the data seen by the models. As

a result, selecting which data to keep and which data to label is challenging.

A separate team typically manages data curation, management, and quality control. Data curation

is a difficult and often ad-hoc process. Data is typically sampled at random until problematic events

are surfaced. Then, data scientists manually search for events that are similar to problematic events.

Ecological analysis. Our collaborators in the Stanford biology departmentwish to find instances of

hummingbirds feeding in field video for downstream manual analysis. The dataset is approximately

9TB and 200 continuous camera-days of video.

In this example, the primary goal is selection. Since exhaustive manual annotation is infeasible

and the downstream analysis can tolerate some missing events, the goal is to select 80% of the

video where hummingbirds appear (as measured by total time of appearance).

There are a number of differences with the autonomous vehicle setting. We have a limited amount

of resources (computational, labeling, development) compared to autonomous vehicle companies.

Furthermore, the goal is to select instances of hummingbirds as opposed to training a high quality

detection method. As we describe, we can leverage the temporal nature of hummingbird visits to

select difficult examples of hummingbirds. In contrast, this approach is not feasible for decision

making in autonomous vehicles.

Data Management for ML-based Analytics and Beyond7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7

3 MONITORING ML DEPLOYMENTS
In this section, we describe and extend work on monitoring ML deployments.

A critical aspect of many ML deployments these monitoring methods leverage is that the output
of many ML models is structured (e.g., boxes of cars). This is in contrast the to unstructured inputs

to many ML models, e.g., images. Since structured records are both easier for domain experts to

reason over and computationally cheaper to process, we believe leveraging these structured outputs

is a promising way of monitoring ML deployments.

We describe two methods of incorporating domain knowledge to monitor ML deployments over

the structured outputs of ML models. Both methods allow multiple users to add monitoring without

being experts in ML model development. We have found this property to be useful for large teams.

3.1 Incorporating Domain Knowledge for Monitoring
As mentioned, the key insight we leverage is that the outputs of ML pipelines are structured, i.e.,
the outputs have a meaningful schema. Importantly, both labels and the outputs of ML models are

structured in the settings we consider. As such, we can apply similar techniques to monitor both

ML model outputs and labels. Furthermore, we can leverage labels to monitor ML model outputs

and vice versa.

An important property of monitoring ML pipelines is that, increasingly, non-experts in ML are

aiding in monitoring. As a result, we focus on simple interfaces that are agnostic to input data

types and specific ML models.

3.2 Manually Specifying Assertions

Overview. We first describe model assertions [32], which allow domain experts to manually

specify when errors in ML models may be occurring.

Model assertions are black-box functions provided by domain experts. As inputs, model assertions

take one or more inputs to ML models and outputs of ML models. For temporal data, this is typically

a recent history of ML model inputs and outputs. The output of a model assertion is real number,

where a zero is an abstention.

The API for implementing model assertions with temporal information is as follows:

def Assertion (model_inputs : List[ModelInputs], model_outputs : List[ModelOutputs]) -> Float

and for point assertions is as follows:

def Assertion (model_inputs : ModelInputs , model_outputs : ModelOutputs) -> Float

We provide concrete instantiations of implementing assertions below.

Examples. We give several examples of model assertions. As we show, model assertions can be

used across domains, tasks (including beyond simple classification), models, and modalities. In

contrast, a range of existing techniques only applies to specific tasks (e.g., only classification [47]

or only detection [10]), models (e.g., only linear models), etc.

Autonomous vehicles. Autonomous vehicles have a number of perception models that predict

information from sensor data (e.g., from LIDAR point clouds, camera pixels, and sonar readings).

The goal of these perception models is to produce accurate predictions about object types, positions,

and other attributes (e.g., if a car is parked or not).

Since these predictions are about the real world, we have found that simple assertions about

real-world behavior are surprisingly effective. For example, if a predicted box of a car is “flying,” it

Data Management for ML-based Analytics and Beyond8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8

is unlikely to be a correct prediction (e.g., if its predicted z-coordinate is above 10 meters high).

Similarly, a car with a velocity of over 120 mph is unlikely to be predicted correctly.

We provide a pseudocode implementation of the flying assertion:

def CarNotFlying (point_cloud : PointCloud , boxes : List[Box3D]):
nb_violations = 0
for box in boxes :

if box.z > 10m:
nb_violations += 1

return nb_violations

As shown, these assertions are often simple to implement, requiring few lines of code.

Video analytics. Similarly for video analytics, many models are used to predict information about

real-world behavior. Consider the case of using traffic camera data to perform analytics over traffic

patterns. As shown in Figure 2, ML models can produce highly unrealistic predictions. As a concrete

example, we can write a simple assertion that states that three boxes of cars should not overlap. To

implement such an assertion, an analyst could provide the following code:

def NoMultipleOverlap (image : Image , boxes : List[Box2D]):
nb_violations = 0
Iterate over the Cartesian product of the three lists
for box1 , box2 , box3 in itertools . product (boxes , boxes , boxes):

If the boxes are the same box , skip this iteration
if box1 == box2 or box2 == box3 or box1 == box3:

continue
If the three boxes simultaneously overlap , we have a violation
if box1. overlaps (box2) and box2. overlaps (box3) and box1. overlaps (box3):

nb_violations += 1
return nb_violations

Although this assertion can be rewritten for higher performance, we present the𝑂 (𝑁 3) version for

clarity of presentation. As above, this assertion can be written in under 10 LOC.

In this example, such predictions can occur for other classes where the model was initially

designed for. For example, boxes of humans or other animals can highly overlap in images. As a

result, it is not desirable to apply such constraints in general, but only in an application-specific

manner.

Translation. Consider an analyst deploying an ML translation model. We trained a model as

suggested by the PyTorch tutorial on translation [44]. This example is novel to this work.

We constructed a simple assertion that asserts that two words should not repeat in the translated

output:

def NoRepeatedWords (original : Word [], translation : Word []):
nb_repeats = 0
for i in range (1, len(translation)):

if translation [i - 1] == translation [i]:
nb_repeats += 1

return nb_repeats

After executing this assertion, we found that 6.4% of the test set triggered this assertion. Thus, simple

assertions can find errors in widely used models.

Housing price prediction. Consider an analyst predicting housing prices from features of the

surrounding area. As an example, we took the popular sklearn Boston housing prices dataset [21]

Data Management for ML-based Analytics and Beyond9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9

10 20 30 40 50
Actual House Prices ($1000)

0

10

20

30

40

Pr
ed

ict
ed

 H
ou

se
 P

ric
es

 ($
10

00
) Actual Prices vs Predicted prices

Fig. 4. Example of errors when predicting housing prices. As we see, two of the examlpes are predicted as

having negative housing prices, which is infeasible.

and a standard example online training a linear regression model to predict the housing prices [20].

This example is novel to this work.

As we show in Figure 4, two of the test data points (i.e., houses) are predicted as having a negative
housing value, which is not valid. To prevent such erroneous predictions, the analyst could write a

simple model assertion that asserts predicted housing prices should be positive:

def OutputPositive (features : HousingFeatures , output : Float):
if output < 0:

return 1
else:

return 0

We note that this example is over structured inputs (i.e., tabular inputs) and structured outputs,

showing that model assertions apply beyond unstructured inputs.

As we have shown, model assertions can be applied to a wide range of tasks, models, and

modalities with few lines of code (<10 LOC in all our examples). Due to their simplicity, we have

found it easy to integrate into existing pipelines.

3.3 Consistency Assertions

Overview. A large class of assertions that we have found to be useful across domains are consis-

tency assertions. Consistency assertions check whether or not predictions are concordant across

time, modalities, or views.

These assertions can be specified via a simple API. Given a set of associated data and predicted

attributes, themodel assertion can simply trigger when there are disagreements. Themodel assertion

can also return the number of disagreements if desired.

An important application of consistency assertions are finding errors in human labels, which is

of critical importance for high-stakes ML deployments (e.g., autonomous vehicle deployments).

We provide several examples of using consistency assertions to find errors in ML model predic-

tions below. We discuss how to find errors in human labels in Section 4.2.

Examples. We describe several examples of consistency assertions.

Data Management for ML-based Analytics and Beyond10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

Fig. 5. Example of a model prediction error in the nuScenes autonomous vehicle dataset. This error was found

via a consistency assertion between different sensor views of the same datas (3D point cloud and camera

data). Taken from Kang et al. [32].

Autonomous vehicles. We provide two examples of finding errors in 3D box prediction from LIDAR

point clouds.

First, consider the setting where multiple models produce predictions over different sensors. For

example, in addition to the 3D box prediction model, a 2D object detection might be executed over

camera data. In this setting, an analyst can write consistency assertion between different views:

the 2D projection of the 3D box via LIDAR should match with the 2D prediction from the camera.

Similarly, we have found errors in the publicly available nuScenes dataset using this method [12].

We show an example of such an error in Figure 5.

Second, consider the setting of only 3D box predictions and a high enough time resolution (e.g.,

10 Hz or higher). In this setting, the analyst can write a consistency assertion that specifies that a

box in frame 𝑡 and 𝑡 + 2 that overlap with IOU at least 0.5 should have a box in frame 𝑡 + 1. We

have found that this assertion can also find errors in state-of-the-art ML models.

Video analytics. Consider the setting of performing traffic analysis from camera data where the

frame rate is 30 frames per second. Suppose the analyst uses a 2D object detection model to localize

and classify vehicles.

Similarly to the autonomous vehicle setting, the detection model is predicting properties of the

real world via sensor data. As such, the analyst can deploy assertions that encode simple properties

about the real world. For example:

(1) A time-consistency assertion as above (a box in frames 𝑡 and 𝑡 + 2 implies a box in frame

𝑡 + 1).

(2) A separate time-consistency assertion asserts that a box of an object should not appear for

only one frame (i.e., a box in frame 𝑡 should have an overlapping box in frame 𝑡 − 1 or 𝑡 + 1).

(3) An assertion that says a continuously tracked object should have the same class prediction

(e.g., a car should not switch to a truck).

Heart arrhythmia detection. Consider the setting where a model predicts heart arrhythmias from

ECG time-series data [42]. These models are often trained on short snippets of ECG readings as

these short snippets are the easiest for doctors to label. When deployed on real data, the models

are expected to predict over continuous data.

As above, the analyst can deploy a simple time-consistency assertion. Heart arrhythmia events

typically do not start and restart in under 30 seconds, so high frequency changes inmodel predictions

are likely to be erroneous.

Data Management for ML-based Analytics and Beyond11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11

Fig. 6. Example of a model prediction error on the Lyft Level 5 dataset. While the predicted boxes (in black)

overlap with the ground truth boxes (in orange), they are inconsistent over time and can be found with Fixy

as a result. Taken from Kang et al. [24].

While many notions of consistency are easy to define (i.e., “hard” consistency), many notions of

consistency are “fuzzy”. As a result, we have extended model assertions to learn consistency from

data.

3.4 Learning Assertions

Overview. While many notions of consistency can be encoded with exact rules (i.e., as described

above), there are other notions of consistency which users may want to encode. For example,

consider a model that predicts 3D boxes from LIDAR data in an autonomous vehicle which predicts

the boxes in Figure 6. As shown, the boxes across three timesteps overlap, but in an unrealistic way.

While such an assertion could be specified manually, it can be difficult to specify all such cases. In

many cases, users wish to specify “soft” assertions, as opposed to “hard” ones.

As a result, we have developed learned observation assertions (LOA), which can find such “soft”

violations as described above. Instead of users specifying each violation manually, they simply

specify attributes over predictions (e.g., box volume). Then, our system that implements LOA, Fixy,

will learn which observations are violations from existing predictions.

LOA takes advantage of two properties of ML deployments. First, many ML deployments collect

human labels and older model predictions. These existing labels and predictions can be used to

learn which subsequent predictions are possibly erroneous. Second, these human labels and ML

model predictions are often correct on average. As a result, they can be used to learn reasonable

distributions over subsequent model predictions.

LOA was designed for auditing autonomous vehicle labels. As such, it explicitly models temporal

structure. However, we believe LOA can be applied to any setting with temporal structure beyond

autonomous vehicle data.

Deploying LOA. We provide an overview of deploying LOA via Fixy and defer the formal

specification of the language to Kang et al. [24].

To use Fixy, a user need only provide:

(1) Access to existing human labels.

(2) Simple functions to compute features and associations over predictions/labels.

(3) Whether or not to select likely or unlikely predictions/labels.

Given these inputs, Fixy will automatically rank which predictions or labels are most likely to be

erroneous.

We provide an example of deploying LOA via Fixy for autonomous vehicle data for finding

erroneous ML model predictions. We describe how to use Fixy to find missing human labels in

Section 4.2.

Data Management for ML-based Analytics and Beyond12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12

To find erroneous ML model predictions, the analyst can use the class-conditional features of box

volume, object velocity, and track length. Then, the analyst specifies to Fixy that they are looking

for unlikely tracks.

Given the specification, Fixy will look for unlikely tracks among the ML model predictions. We

show an example in Figure 6, where the predicted truck box is highly inconsistent across frames.

As a result, Fixy will flag such a track highly.

We show quantitative results of Fixy finding errors in human labels in Section 4.

4 CURATION AND QUALITY CONTROL OF LABELED DATA
A critical component of ML deployments is the curation of high-quality training data. The curation

of this data involves two steps: 1) selecting which data to label and 2) ensuring the labels have high

quality.

ML deployments have limited resources to label data: human labels are orders of magnitude

more expensive than ML model inference. As a result, ML pipeline deployers must select which

data to label.

In contrast to standard assumptions that human-labeled data is ground truth, an emerging body

of work has shown that datasets are rife with errors. These errors can cause cascading failures in

ML deployments and are thus of critical importance to find. Quantitatively, recent work has shown

that label errors can cause a model capacity to degrade by up to 3× compared to training in clean

data [39].

As such, we describe how assertions can be used to select and perform quality assurance over

labeled data.

4.1 Selecting Data

Overview and comparison to active learning. Selecting data to label is closely related to active
learning [47]. In active learning, data is labeled and added to a training set to improve model quality.

However, ML deployments often have requirements outside of the constraints of traditional active

learning:

Standard active learning aims to add data to the training set, as it assumes the validation/test

sets are representative. In contrast, we aim to select data to label for the training, validation, and

test sets. This is especially important as validation and test datasets are often selected specifically

to not reflect the input distribution, but to cover rare events as well.

Active learning also aims to connect specific objectives (e.g., high binary classification accuracy)

to the data collection process. In contrast, a wide range of ML deployments we have encountered

are interested in finding examples where the ML model produces incorrect predictions. Incorrect
predictions are important for several reasons. First, analysts often wish to perform manual analysis

on data where the model is underperforming. These analyses often inform decisions beyond the

scope of traditional active learning, such as changing the model architecture or changing control

algorithms to avoid such situations. Second, knowing where the model is failing is critical for

liability reasons. Third, data where the model is incorrect is often more valuable for improving
model quality than standard theory may suggest for complex deep learning models.

Finally, active learning is often specific to at least one of task, model type, and training objective.

For example, active learning techniques for classification [47] do not apply to object detection and

vice versa [10]. Other active learning techniques are specific to the form of the model (e.g., logistic

regression models) [46]. Since tasks and model types are constantly emerging, we have focused on

constructing APIs that are agnostic to the task, model type, and training objective.

Data Management for ML-based Analytics and Beyond13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13

2 3 4 5
Round

59

60

61

62

63

64

m
AP Random

Uncertainty
Uniform MA
BAL

Fig. 7. Performance of active learning when using random sampling, uncertainty sampling, and model

assertions. BAL is the bandit active learning algorithm that leverages model assertions. The x-axis is the

round of training and the y-axis is the mAP. As shown, BAL can achieve the 62 mAP target with 40% fewer

labels compared to baselines. Taken from Kang et al. [32].

Selecting incorrect predictions. To select data for labeling, we use the assertions as described

in Section 3. As described, the assertion interface is agnostic to data type (as assertions primarily

operate on the structured outputs), task, and model type.

Given a set of inputs that assertions trigger on, an important question is how to select which data

points to label given limited resources. We note that many ML deployments have objectives outside

of maximizing average accuracy. For example, certain classes of errors might be more important to

reduce for liability or business reasons (e.g., errors in detecting objects closer to an autonomous

vehicle). As a result, end users may be interested in custom weightings for selecting data.

However, in many cases, we have found that reducing the fraction of data that assertions trigger

on is often a good starting heuristic. To understand why, consider the setting where assertions

have perfect precision (i.e., if an assertion triggers, the data point has an erroneous ML prediction).

In this setting, if no assertions trigger, then the model entirely avoids the classes of errors the

assertions specify.

Evaluating assertions for training. To evaluate assertions for training quality improvements,

we compared assertions to standard baselines of random sampling and uncertainty sampling. We

performed five rounds of active learning on a video analytics dataset for 2D box detection. We

measured the mean average precision (mAP), a standard metric for 2D object detection.

We show results in Figure 7. As shown, using assertions outperforms baselines. At a fixed

accuracy, they can require up to 40% fewer labels.

4.2 Quality Control of Labeled Data
In contrast to a wide range of work that assumes labeled data is ground truth, we have found

widely used datasets are rife with errors. An emerging body of work also observes similar issues

with popular datasets [39].

While these errors may seem innocuous, they are critical to find. Many mission-critical ML

deployments have strong legal liability reasons to find errors in labeled data. Furthermore, recent

work has shown that 6% label noise can effectively reduce model capacity by over 3× [39] (e.g.,

making a ResNet-50 perform at the same level as a ResNet-18 on clean data).

As such, we describe methods that leverage assertions to find errors in labeled data.

4.2.1 Overview. Errors in human-labeled “ground truth” data can degrade model quality (if in

training data) and lead to misleading metrics (if in validation or test data). As such, examining

human labels for errors is of increasing importance.

Data Management for ML-based Analytics and Beyond14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14

Since ML deployments are continuous, ML models are often correct on average. As a result,

predictions from ML models can be used to vet human labels. In particular, the simple procedure

of selecting the highest confidence model predictions disagreeing with human labels can find

numerous errors in production datasets.

While seemingly simple, even production autonomous vehicle datasets do not leverage this idea.

For example, the Lyft Level 5 dataset is rife with errors, as shown in Figure 3. We describe the

setting and provide pseudocode in detail below.

4.2.2 Finding errors via manual consistency assertions. We consider the setting of finding errors

in 3D box predictions from LIDAR point cloud and camera data. The most important errors to

discover are ones where the human labeler entirely missed the object: this is for both liability and

model performance reasons.

To find such errors, the analyst can take a trained 3D box prediction model (e.g., PointPillars

[34]) and produce predictions over the labeled data. Then, the analyst can filter the predictions and

select only those that do not overlap with an existing human label. Finally, the analyst can rank

order the remaining predictions and manually analyze them for missing labels.

We show that, even when trained on noisy data, ML models can learn sufficiently well to find

examples of missing human labels.

4.2.3 Finding errors with learned assertions. Aswith consistency assertions, we leverage existingML

models present in ML deployments. Instead of returning individual boxes with highest confidence

not overlapping a human-labeled box, we use Fixy to find continuous tracks of boxes that are likely
to be missing objects.

To do so, the analyst can specify the following associations and features. First, the analyst

associates boxes with overlap across adjacent frames to form tracks. Then, the analyst can specify

the following class-conditional features over the data: box volume, object velocity, and track length.

Finally, the analyst specifies that they are looking for likely tracks.

Given these inputs, Fixy will rank order the tracks by those likely to be consistent, and therefore

objects missed by the human labeler. We show several examples of missing tracks found by Fixy

in Figure 3. We emphasize that these labels were generated by a leading label vendor and a well

funded engineering organization.

4.2.4 Examples of errors. To show the utility of assertions for finding errors in human labels, we

applied assertions to two autonomous vehicle datasets. We are unaware of other techniques to find

missing human labels in detection datasets.

The datasets we evaluated on were the publicly available Lyft Level 5 perception dataset and

an internal dataset at the Toyota Research Institute (TRI). The Lyft Level 5 dataset was labeled by

a leading vendor for human labels: Waymo, Cruise, Uber, and Lyft have all used labels from this

vendor [1].

We trained 3D object detection models on the datasets respectively and searched for errors in

cars, trucks, and motorcycles.

For errors in human labels, we are primarily concerned with discovering missing human labels.

This is for two reasons: 1) finding missing human labels is the most important for liability and

performance reasons and 2) auditing existing labels is much less costly.

Results: recall. A critical question when applying assertions is the recall of finding errors, i.e., the
total number of missing human labels found when using assertions. Many such errors are apparent

when found, e.g., the errors highlighted in Figure 3. Unfortunately, evaluating recall is difficult, as it

requires finding all errors in data. As a result, we present targeted experiments on evaluating recall.

Data Management for ML-based Analytics and Beyond15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

15

Method Dataset Precision at top 10 Precision at top 5 Precision at top 1

Fixy Lyft 69% 70% 67%
Consistency assertions (rand) Lyft 32% 30% 24%

Consistency assertions (conf) Lyft 39% 40% 39%

Fixy Internal 76% 100% 100%
Consistency assertions (rand) Internal 49% 64% 66%

Consistency assertions (conf) Internal 71% 86% 66%

Table 2. Precision at top 10 of Fixy and manual consistency assertions for finding tracks missed by humans.

Assertions can achieve precision as high as 100% and remains high even when searching for 10 errors per

scene. Taken from Kang et al. [24].

We first evaluated the recall of LOA exhaustively on an 15 second scene from the internal TRI

dataset. The vendor provided labels that missed 24 objects. Using LOA, we found 75% (18) of the

errors in the top 10 errors per class.

We next evaluated the recall of LOA on the Lyft Level 5 dataset. We manually examined every

scene in the validation dataset (i.e., those not seen by the model at training time) and discovered 32

scenes with errors, out of 53 total scenes.

Namely, 70% of scenes in the Lyft Level 5 validation set contained at least one error. Impressively,

LOA found at least one error among every validation scene that contained an error. In other words,

LOA had a 100% recall on scenes with errors in the Lyft Level 5 dataset.

Results: precision. In addition to measuring recall, we measured the precision of LOA and manual

consistency assertions. As we show, leveraging learned assertions can improve precision beyond

simple, manually consistency assertions.

We show the precision of manual consistency assertions and LOA for finding errors in the Lyft

Level 5 dataset and our internal dataset in Table 2. As we see, the precision of consistency assertions

can be as high as 100% (at top one). The precision remains high when searching for the top 10

errors per scene.

5 ANALYTICS WITH GUARANTEES
Finally, as a case study of an end-to-end ML pipeline, we describe how to leverage ML to perform

analytics with guarantees on accuracy with respect to an expert human labeler. Many analytics

systems assume that ML models return correct answers [2, 6, 27], which is an invalid assumption

[35]. As a result, these systems focus on optimizing the runtime of executing analytics queries with

respect to some ML model.

We describe methods of combining sampling from expert human labelers while leveraging ML

models to improve sampling efficiency. Namely, ML models augment human effort. Throughout

this section, ML models are used as a proxy, or approximation, for expert human labels.

We describe several use cases for analytics with ML-augmentation and describe how to perform

selection queries with guaranteed recall and aggregation queries with guaranteed error bounds.

5.1 Use Cases
Many applications that require accuracy with respect to an expert human labeler are scientific in

nature. In particular, many scientific claims are frequentist in nature, e.g., that the null hypothesis

is rejected with some failure probability.

We describe two analytics queries with several examples of applications for each. These applica-

tions feature the common property that the datasets are far too large to manually annotate. As a

Data Management for ML-based Analytics and Beyond16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16

result, analysts and scientists turn to sampling methods, which we show can be augmented with

ML.

Aggregation queries. A range of applications aim to compute linear statistics over large datasets

(e.g., counts, sums, averages). For example, a traffic analyst may wish to compute the average

number of cars per frame of a video to compare how busy two different intersections are. A social

scientist studying the effect of newspaper media on public views on government program may

compute the average sentiment of opinion articles discussing the New Deal.

As these queries are used for scientific applications, the scientists often desire frequentist guar-

antees on coverage of confidence intervals over the reported statistic.

Selection queries. Other applications aim to select events from large datasets. These events are

typically rare and are used in downstream manual analysis. For example, our collaborators in the

Stanford biology department desire to find 80% of the visits of hummingbirds to a bush in field

video, as measured by time. An urban planner may be interested in finding 80% of instances of

events where a car cuts off a cyclist in traffic camera video.

5.2 Aggregation with Guarantees
5.2.1 Query semantics. Consider a datasetD = {𝑥} where |D| is large. Consider an oracle function
O(𝑥) ∈ R, which computes the per-example statistic of interest (e.g., number of cars via an expensive

detection model).

The goal is to compute approximately compute 𝜇 = ED [O(𝑥)] with as few invocations of O(𝑥)
as possible. Furthermore, we aim to return a confidence interval [𝜇, 𝜇] that is as tight as possible
subject to a coverage guarantee. The coverage guarantee is specified as a user-provided failure

probability 𝛿 .

We are given access to a proxy P(𝑥) that approximates O(𝑥), i.e., that P(𝑥) ≈ O(𝑥).

5.2.2 Prior algorithms. Prior work on aggregation queries optimizes approximate aggregation via

sampling. As a naive baseline, random sampling can already reduce computational costs by over

100×, depending on the dataset size and error tolerance.

However, random sampling does not leverage that many applications have proxies that are easy

to construct. We defer discussions of constructing these proxies to other manuscripts [25, 30]. To

leverage proxies for sampling, the BlazeIt system uses them as a variance reduction technique

in the form of control variates. Specifically, given the quantities above, we can form the unbiased

estimator

O∗ = O + 𝑐 (P − E[P]) (1)

where 𝑐 is any arbitrary constant. The variance minimizing 𝑐 is equal to −Cov(O,P)
Var(P) .

Finally, to achieve the error guarantees, BlazeIt uses an always-valid stopping rule, EBS sampling.

Intuitively, EBS sampling “uses” a small portion of the failure budget at every sample to ensure

validity. EBS sampling makes no assumptions on the statistic except that it lies within some range.

As we show below, this can result in suboptimal stopping, given minor assumptions about the

relationship between the proxy and oracle.

5.2.3 Optimized algorithm. We show that leveraging reasonable priors about how the proxy is

correlated with the oracle statistic can result in suboptimal sampling. To address this, we present

BlazeIt++, an optimized aggregation algorithm.

Overview. To understand the intuition behind BlazeIt++, consider Equation 1. In particular, the

variance of O∗ is equal to:
Var(O∗) = (1 − 𝜌2

O,P)Var(O)

Data Management for ML-based Analytics and Beyond17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17

Algorithm 1 Optimized aggregation algorithm, BlazeIt++. If the proxy is correlated with the

oracle, the control variates estimator will have variance lower than in the worst case. As a result,

the assumptions for EBS sampling are pessimistic. To address this, BlazeIt++ first estimates the

variance before proceeding. Here, 𝑍 is the two-sided z-value function.𝑊 is the Lambert W function.

1: function BlazeIt++(O,P, 𝜖, 𝛿)
2: 𝑆 ← ControlVariates(O,P, RandomSample(D, 1000))
3: 𝑉 ← Var(𝑆)
4: 𝑉UB ← (1000−1)𝑉̂

𝜒2

𝛿/2
⊲ Chi-Squared Tail Bound

5: 𝑖 ← 0

6: 𝜙 ← 𝛿
4

7: 𝑛 ← 𝑍 (𝜙)2𝑉̂UB

𝜖2

8: while true do
9: 𝑆 ← ControlVariates(O,P, RandomSample(D, 𝑛))
10: 𝜇, 𝜇LB, 𝜇UB ← EstimateWithCI(𝑆,𝑉UB, 𝜙,max(P))
11: if 𝜇LB + 𝜖 < 𝜇UB − 𝜖 then
12: break

13: 𝜙 ← 𝜙

2

14: 𝑛 ← 2𝑛

15: return 𝜇

16:

17: function EstimateWithCI(𝑆 , 𝑉UB, 𝛿 , 𝐶)

18: 𝜇 ← E[𝑆]
19: 𝑡 ← −𝐶2

log(𝛿)
𝑉̂UB

⊲ Bennet’s Inequality

20: 𝑡 ← 𝑒𝑊0 (ℎ−1

𝑒
+1) − 1 ⊲ Lambert W Function

21: 𝑡 ← Real(𝑡𝑉UB/𝐶)/|𝑆 |
22: return 𝜇, 𝜇 − 𝑡, 𝜇 + 𝑡

where 𝜌O,P is the correlation between O and P. Namely, the more correlated the proxy is with the

oracle, the lower the variance of the control variate estimator.

We assume a natural property of the proxy: that P is non-trivially correlated with O. However,
we note that this assumption is only necessary for the performance, not correctness of our algorithm.

We present BlazeIt++ in Algorithm 1. It operates by forming an estimate of the total number

of samples necessary to achieve the error target given the assumptions above. Namely, it first

estimates the variance of the control variate sampler using 1,000 random samples. It then estimates

the total number of samples necessary to achieve the error bound given the estimated variance. If

the sample size is too small, it iteratively doubles the sample size until the error target is achieved.

To compute the confidence intervals, we invert Bennett’s inequality [8], which provides sub-

Gaussian, finite-sample tail, bounds. As a result, we recover the same guarantees as EBS sampling.

Correctness. We prove correctness by first showing that the algorithm terminates and then by

showing that the algorithm is valid at any termination point.

Termination follows since the dataset is finite and the number of samples increases at every

iteration.

Correctness follows by the union bound. Suppose the algorithm terminates at step 𝑖 . Then, by

the union bound, the probability that the confidence interval is valid is at least

∑𝑖
𝑗=0

𝛼
2
𝑗 ≤ 𝛼 .

Data Management for ML-based Analytics and Beyond18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18

Random BlazeIt BlazeIt++
0

50000

100000

sa

m
pl

es

1.0x

1.7x

3.7x

a) taipei

Random BlazeIt BlazeIt++
0

20000

40000

60000 1.0x

1.5x

4.7x

b) night-street

Random BlazeIt BlazeIt++
0

50000

100000

150000

sa

m
pl

es

1.0x

1.4x

2.5x

c) rialto

Random BlazeIt BlazeIt++
0

25000

50000

75000 1.0x

1.6x

3.7x

d) grand-canal

Random BlazeIt BlazeIt++
0

20000

40000

60000

sa

m
pl

es

1.0x

1.4x

3.5x

e) amsterdam

Random BlazeIt BlazeIt++
0

20000

40000

60000 1.0x

1.5x

3.4x

f) archie

Fig. 8. Performance of BlazeIt and BlazeIt++ on the datasets considered by Kang et al. [25]. The y-axis is

the number of samples required to achieve the error target. We show the improvement over random sampling

in the numbers above the bars. As shown, our improved algorithm outperforms on all datasets.

5.2.4 Evaluation. To evaluate BlazeIt++, we used the datasets and proxy scores generated by

Kang et al. [25] to evaluate the BlazeIt system. We then executed random sampling, the algorithm

BlazeIt uses, and BlazeIt++. We targeted an error of 0.01 and a success probability of 95%.

We show results in Figure 8. As shown, BlazeIt++ outperforms on all datasets, outperform-

ing random sampling by up to 4.7× and BlazeIt by up to 3.3×. Thus, by leveraging reasonable

assumptions about the proxy and oracle, we can construct higher performing sampling algorithms.

5.3 Selection with Guarantees
5.3.1 Query semantics. As before, consider a dataset D = {𝑥} where |D| is large. Instead of

considering a real valued oracle, consider an oracle O(𝑥) ∈ {0, 1}, which represents the result of a

boolean predicate. For example, O(𝑥) may represent if a car is present in a frame of a video.

For S ⊂ D, define the recall and precision of S:

𝑃S =

∑
𝑥 ∈S O(𝑋)
|S| (2)

𝑅S =

∑
𝑥 ∈S O(𝑋)∑
𝑥 ∈D O(𝑋)

(3)

The goal is to return a set S such that 𝑅S is above some recall target 𝑅 and that 𝑃S is maximized.

We are given a proxy P(𝑥) ∈ [0, 1] that approximates O(𝑥).

5.3.2 Prior algorithm. Suppose we are given a calibrated proxy P(𝑥), i.e., a proxy such that

P(𝑥) = Pr𝑥∼D [O(𝑥) = 1|P(𝑥)] . (4)

Intuitively, if a calibrated proxy returns 0.9, then 90% of the time, O(𝑥) will evaluate to true.

Kang et al. [28] developed SUPG to perform approximate selection. To perform approximate

selection, SUPG orders D by proxy score and returns all records above some threshold 𝐶 , i.e., all

records with P(𝑥) > 𝐶 . To achieve the recall target, SUPG uses importance sampling to generate a

Data Management for ML-based Analytics and Beyond19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

19

Algorithm 2 Optimized SUPG algorithm, SUPG++. SUPG++ forms an estimate of the total number

of positive examples and up-weights the top ranked records by proxy score. It then leverages the

standard SUPG algorithm.

1: function SUPG++(O,P, 𝑅, 𝛿)
2: 𝐸P ← E[P(𝑥)]
3: 𝐶 = 3𝐸P · |D|
4: P’← UpweightTopC(P,𝐶)
5: return SUPG(O,P’, 𝑅, 𝛿)

sample S. Then, it forms estimates of the fraction of records above and below an adjusted recall

cutoff. Given these estimates, SUPG forms an estimate of the cutoff 𝐶 to achieve the recall target.

Namely, given the empirical cutoff 𝜏 SUPG constructs the sets

𝑍1 = {1P(𝑥) ≥𝜏O(𝑥) : 𝑥 ∈ S} (5)

𝑍2 = {1P(𝑥)<𝜏O(𝑥) : 𝑥 ∈ 𝑆𝑒𝑡} (6)

and upper/lower bounds the mean over these sets to form an adjusted recall target:

UB(𝜇𝑍1
)

UB(𝜇𝑍1
) + LB(𝜇𝑍2

) (7)

Kang et al. [28] showed that to estimate E[O(𝑥)], the variance minimizing strategy given a

calibrated proxy is to sample proportional to

√
P(𝑥). Since this quantity is similar to the quantities

estimated in Equation 7, SUPG samples according to

√
P(𝑥).

5.3.3 Optimized algorithm. We propose a modified version of SUPG which leverages properties of

proxies that often hold on real datasets.

Overview. The performance analysis of SUPG relies on two assumptions: 1) that P(𝑥) is calibrated
and 2) that minimizing the variance of the estimate of E[O(𝑥)] corresponds to minimizing estimates

of the means of Equations 5 and 6.

However, these assumptions often do not hold. An emerging body of work in the ML literature

shows that MLmodels are rarely calibrated, but are oftenmonotonic in the proxy score. Furthermore,

recall targets are often relatively high (e.g., 90%), so the estimator is more sensitive to 𝑍1 in practice.

As a result, we propose a modified version of SUPG, SUPG++. We provide pseudocode in

Algorithm 2. SUPG++ first estimates the total number of positive examples using𝐴 = E[P(𝑥)] · |D|.
Then, SUPG++ up-weighs the top 3𝐴 records by proxy score by setting the proxy scores of these

records to 1. Given these updated weights, SUPG++ uses the standard SUPG procedure.

Correctness. SUPG’s sampling procedure and estimation is valid regardless of the proxy weights.

As SUPG++ only modifies the proxy weights, SUPG++ is valid.

Intuition. To understand why SUPG++ performs well, we note that proxies are often monotonic
although not calibrated. As a result, the rank ordering of records by proxy value is often “good,”

even though the absolute proxy scores may not be informative. As a result, in many real world

settings, the positive records are clustered near the top of the rank ordering. Furthermore, for

higher recall targets, the estimator is more sensitive to the total number of positive records sampled.

As a result, up-weighting the top ranked proxy scores can boost performance.

5.3.4 Evaluation. To evaluate SUPG++, we used the datasets and proxy scores generated by Kang

et al. [28] to evaluate SUPG. We evaluated against the importance sampling procedure of SUPG++

Data Management for ML-based Analytics and Beyond20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20

0

10

20

30

40

Pr
ec

isi
on

 (%
)

21.9%

39.7%

a) TACRED

0

10

20

30
23.6%

33.9%

b) OntoNotes

SUPG SUPG++
0

20

40

60

80

Pr
ec

isi
on

 (%
) 73.6%

86.3%

c) ImageNet

SUPG SUPG++
0.0

2.5

5.0

7.5

10.0

12.5
10.9% 11.1%

d) night-street

Fig. 9. Performance of SUPG and SUPG++ on the real-world datasets considered by Kang et al. [28] for the

90% recall target. As shown, our improved algorithm outperforms on all datasets.

and the modified importance sampling procedure of SUPG++. We targeted a recall target of 90%

and a success probability of 95%. We measured precision, where a higher precision is better.

We show results in Figure 9. As shown, SUPG++ outperforms on all datasets by up to 18% in

absolute precision points and 81% in relative terms. As before, we can construct higher performing

sampling algorithms by leveraging reasonable assumptions about proxies.

6 RELATEDWORK
Work from the ML to systems communities have focused on improving various aspects of ML

deployments. Furthermore, an emerging body of work focuses on various aspects that we highlight

(e.g. “data-centric AI”). We highlight several related areas of work. We note that this work draws

heavily from and extends prior work [24, 25, 28, 32].

Monitoring ML. Monitoring ML has becoming increasingly important. One such line of work

focuses on monitoring ML pipelines with semantically meaningful input schemas, i.e., tabular data

[7]. This line of work focuses on validating inputs, e.g., that Boolean values are zeros or ones (as

opposed to arbitrary values).

Another line of work focuses on monitoring statistical properties of inputs or outputs [9]. For

example, if the proportion of a specific input field that is null dramatically increases, this likely

signifies an upstream feature generation bug. Actions can then be taken as a result of finding such

errors.

While this work is valuable for ML deployments with meaningful input schemas, they do not

directly to apply to complex, unstructured data. Monitoring ML deployments over these data types

are what we focus on in this work.

ML testing. Recent work aims to test ML systems, often focusing on a specific aspect of deploy-

ments. These aspects range from numeric errors (e.g., TensorFuzz [40]) to “formal verification” of

properties [19]. These techniques are complementary to the ones we describe and an important

part of ML deployments.

ML data curation. ML data curation is closely related to active learning. As discussed, active

learning focuses on selecting data points to label to improve specific validation metrics [47]. ML

deployments require curation of data for a range of purposes outside of improving validation

Data Management for ML-based Analytics and Beyond21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

21

metrics, including for legal liability, manual error analysis, test set curation, and creating new

models. Assertion-based data curation can be used for these extended purposes.

ML data quality control. A recent line of work (“data-centric AI”) focuses on the importance of

data in ML deployments [41]. For example, Northcutt et al. [39] shows that ten commonly used

classificationML datasets are rife with errors. In this work, we focus on allowing domain experts to

specify expert knowledge to find errors, regardless of data type, model, or task.

Analytics with ML. ML offers a powerful primitive to turn unstructured data into structured

data. As such, the analytics community has focused on leveraging ML in queries and optimizing

the execution of such queries. Recent work has focused on optimizing selection queries [2, 27, 28],

aggregation queries [25, 29], tracking queries [6], indexing [30], fast query execution [31] etc. In this

work, we describe analytics with ML as an example of an end-to-end ML pipeline. We describe how

to leverage the work from assertions and optimize the pipeline end-to-end with user constraints.

7 CONCLUSION
In this work, we describe commonalities between ML deployment pipelines and interfaces between

various components. We describe two underlooked areas of ML deployments: monitoring ML

deployments at deployment time and the curation of high quality training data. Perhaps surprisingly,

we show that assertions can be used for both tasks effectively. We finally describe how to optimize

ML-based analytics end-to-end as an example of an ML deployment, and how to leverage assertions

for analytics.

REFERENCES
[1] Trixia Abrera. 2019. A 22 Year-Old CEO Can Affect The Safety Of Your Next Uber Ride. (2019). https://greyjournal.

net/hustle/work-tech/a-22-year-old-ceo-can-affect-the-safety-of-your-next-uber-ride/

[2] Michael R Anderson, Michael Cafarella, Thomas F Wenisch, and German Ros. 2019. Predicate Optimization for a

Visual Analytics Database. ICDE (2019).

[3] Dolan Antenucci, Michael Cafarella, Margaret Levenstein, Christopher Ré, and Matthew D Shapiro. 2014. Using social
media to measure labor market flows. Technical Report. National Bureau of Economic Research.

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. 2018. Synthesizing robust adversarial examples. In

International conference on machine learning. PMLR, 284–293.

[5] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sahaana Suri. 2017. Macrobase:

Prioritizing attention in fast data. In SIGMOD. 541–556.
[6] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mohammad Alizadeh, Hari Balakrishnan,

Michael Cafarella, Tim Kraska, and Sam Madden. 2020. MIRIS: Fast Object Track Queries in Video. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 1907–1921.

[7] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir,

Vihan Jain, Levent Koc, et al. 2017. Tfx: A tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1387–1395.

[8] George Bennett. 1962. Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57,
297 (1962), 33–45.

[9] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich. 2019. Data Validation for Machine

Learning.. In MLSys.
[10] Clemens-Alexander Brust, Christoph Käding, and Joachim Denzler. 2018. Active learning for deep object detection.

arXiv preprint arXiv:1809.09875 (2018).
[11] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining. 535–541.
[12] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,

Giancarlo Baldan, and Oscar Beijbom. 2020. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 11621–11631.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive

learning of visual representations. In International conference on machine learning. PMLR, 1597–1607.

https://greyjournal.net/hustle/work-tech/a-22-year-old-ceo-can-affect-the-safety-of-your-next-uber-ride/
https://greyjournal.net/hustle/work-tech/a-22-year-old-ceo-can-affect-the-safety-of-your-next-uber-ride/

Data Management for ML-based Analytics and Beyond22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved baselines with momentum contrastive

learning. arXiv preprint arXiv:2003.04297 (2020).

[15] Jack Choquette and Wish Gandhi. 2020. Nvidia A100 GPU: Performance & innovation for GPU computing. In 2020
IEEE Hot Chips 32 Symposium (HCS). IEEE Computer Society, 1–43.

[16] Brian Dean. 2021. Tesla Revenue and Production Statistics for 2021. https://backlinko.com/tesla-stats. (2021).

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, DirkWeissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa

Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[19] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In International Sympo-

sium on Automated Technology for Verification and Analysis. Springer, 269–286.
[20] Amit Gupta. 2019. Sklearn Linear Regression Tutorial with Boston House Dataset. (2019). https://amitg0161.medium.

com/sklearn-linear-regression-tutorial-with-boston-house-dataset-cde74afd460a

[21] David Harrison Jr and Daniel L Rubinfeld. 1978. Hedonic housing prices and the demand for clean air. Journal of
environmental economics and management 5, 1 (1978), 81–102.

[22] Andrew Hawkins. 2019. Serious safety lapses led to Uber’s fatal self-driving crash, new documents suggest. https:

//www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments. (2019).

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. 2021. Masked autoencoders are

scalable vision learners. arXiv preprint arXiv:2111.06377 (2021).

[24] Daniel Kang, Nikos Arechiga, , Sudeep Pillai, Peter Bailis, and Matei Zaharia. 2022. Finding Label and Model Errors in

Perception Data With Learned Observation Assertions. SIGMOD (2022).

[25] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declarative Aggregation and Limit Queries for

Neural Network-Based Video Analytics. PVLDB (2019).

[26] Daniel Kang, Alex Derhacobian, Kaoru Tsuji, Trevor Hebert, Peter Bailis, Tadashi Fukami, Tatsunori Hashimoto, Yi

Sun, and Matei Zaharia. 2021. Exploiting Proximity Search and Easy Examples to Select Rare Events. NeurIPS DCAI
workshop (2021).

[27] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017. NoScope: optimizing neural network

queries over video at scale. PVLDB 10, 11 (2017), 1586–1597.

[28] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia. 2020. Approximate Selection with

Guarantees using Proxies. PVLDB (2020).

[29] Daniel Kang, JohnGuibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, andMatei Zaharia. 2021. Accelerating Approximate

Aggregation Queries with Expensive Predicates. PVLDB (2021).

[30] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia. 2022. Semantic Indexes for Machine

Learning-based Queries over Unstructured Data. SIGMOD (2022).

[31] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia. 2021. Jointly Optimizing Prepro-

cessing and Inference for DNN-based Visual Analytics. PVLDB (2021).

[32] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model assertions for monitoring and improving

ML models. MLSys (2020).
[33] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S.

Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet. 2019. Level 5 Perception Dataset

2020. https://level-5.global/level5/data/.

[34] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. 2019. Pointpillars: Fast

encoders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 12697–12705.

[35] David Lazer and Ryan Kennedy. 2015. What We Can Learn From the Epic Failure of Google Flu Trends. https:

//www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/. (2015).

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. 2014. Microsoft coco: Common objects in context. In ECCV. Springer, 740–755.
[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

2016. Ssd: Single shot multibox detector. In European conference on computer vision. Springer, 21–37.
[38] Ramin Nabati and Hairong Qi. 2021. Centerfusion: Center-based radar and camera fusion for 3d object detection. In

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 1527–1536.
[39] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. 2021. Pervasive label errors in test sets destabilize machine

learning benchmarks. arXiv preprint arXiv:2103.14749 (2021).
[40] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019. Tensorfuzz: Debugging neural networks

with coverage-guided fuzzing. In International Conference on Machine Learning. PMLR, 4901–4911.

https://backlinko.com/tesla-stats
https://amitg0161.medium.com/sklearn-linear-regression-tutorial-with-boston-house-dataset-cde74afd460a
https://amitg0161.medium.com/sklearn-linear-regression-tutorial-with-boston-house-dataset-cde74afd460a
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-reason-ntsb-dcouments
https://level-5.global/level5/data/
https://www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/
https://www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/

Data Management for ML-based Analytics and Beyond23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

23

[41] Neoklis Polyzotis and Matei Zaharia. 2021. What can Data-Centric AI Learn from Data and ML Engineering? arXiv
preprint arXiv:2112.06439 (2021).

[42] Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew Y Ng. 2017. Cardiologist-level

arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:1707.01836 (2017).
[43] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian

Anderson, Maximilien Breughe, Mark Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 446–459.

[44] Sean Robertson. 2022. NLP from Scratch: Translation with a Sequence to Sequence Network and Attention. (2022).

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

[45] Kexin Rong, Clara E Yoon, Karianne J Bergen, Hashem Elezabi, Peter Bailis, Philip Levis, and Gregory C Beroza. 2018.

Locality-sensitive hashing for earthquake detection: A case study of scaling data-driven science. PVLDB (2018).

[46] Andrew I Schein and Lyle H Ungar. 2007. Active learning for logistic regression: an evaluation. Machine Learning 68,

3 (2007), 235–265.

[47] Burr Settles. 2009. Active learning literature survey. (2009).

[48] Vinay Shet. 2019. Lyft Level 5 Self-Driving Perception Dataset Competition Now Open. https://medium.com/

wovenplanetlevel5/lyft-level-5-self-driving-dataset-competition-now-open-97493e9f154a. (2019).

[49] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Revisiting unreasonable effectiveness of

data in deep learning era. In Proceedings of the IEEE international conference on computer vision. 843–852.
[50] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised feature learning via non-parametric

instance discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition. 3733–3742.
[51] Weiming Xiang, Patrick Musau, Ayana A Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel

Rosenfeld, and Taylor T Johnson. 2018. Verification for machine learning, autonomy, and neural networks survey.

arXiv preprint arXiv:1810.01989 (2018).
[52] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein.

2020. Learning in situ: a randomized experiment in video streaming. In 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20). 495–511.

[53] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. 2019. Class-balanced Grouping and Sampling

for Point Cloud 3D Object Detection. arXiv preprint arXiv:1908.09492 (2019).

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
https://medium.com/wovenplanetlevel5/lyft-level-5-self-driving-dataset-competition-now-open-97493e9f154a
https://medium.com/wovenplanetlevel5/lyft-level-5-self-driving-dataset-competition-now-open-97493e9f154a

	Abstract
	1 Introduction
	2 Background
	2.1 Overview
	2.2 Training
	2.3 Validation
	2.4 Inference and End Use
	2.5 Curation of Training Data
	2.6 Examples

	3 Monitoring ML Deployments
	3.1 Incorporating Domain Knowledge for Monitoring
	3.2 Manually Specifying Assertions
	3.3 Consistency Assertions
	3.4 Learning Assertions

	4 Curation and Quality Control of Labeled Data
	4.1 Selecting Data
	4.2 Quality Control of Labeled Data

	5 Analytics with Guarantees
	5.1 Use Cases
	5.2 Aggregation with Guarantees
	5.3 Selection with Guarantees

	6 Related Work
	7 Conclusion
	References

