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ABSTRACT

Analysts and scientists are increasingly interested in automatically
analyzing the semantic contents of unstructured, non-tabular data.
In order to extract semantic information, analysts have turned to
machine learning (ML) methods, which are most commonly used
in unstructured analytics systems as user-defined functions (UDFs).
Unfortunately, UDFs can be difficult to implement, unintuitive to
application users, and challenging for systems to automatically
optimize queries over.

Instead of specifying ML models via UDFs, we instead propose
specifying mappings between virtual columns in a structured table,
where virtual rows are materialized via ML models on-demand.
Users are able to directly query columns as in standard structured
tables. Furthermore, query engines are able to leverage standard
techniques for query optimization instead of having to optimize
over opaque UDFs. We implement these fully virtualized tables in
a novel query engine, AIDB. We show that virtualized tables allow
novel caching and sampling optimizations, which can improve
query execution speeds by up to 300×.
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1 INTRODUCTION

In recent years, analysts and scientists are increasingly interested in
analyzing unstructured data in the form of videos, image, text, and
audio. Application users ranging from scientists to business analysts
can query the semantic contents of this data to understand the real
world. A traffic analyst could query video data to understand traffic
patterns; a social scientist can query newspaper scans to track
sentiment over historical news events.

Increasingly, these application users are leveraging machine
learning (ML) to extract the semantic information. For example, the
urban planner could use an expensive deep neural network (DNN)
such as Mask R-CNN to find object types and locations, which can
subsequently be used to count cars or perform other traffic analy-
ses. Unfortunately, these ML methods can be incredibly expensive:
analyzing a small town’s worth of video (100 camera-months) could
cost millions in cloud compute credits [15]. Furthermore, these ML
methods are difficult to implement for non-experts.

To address the cost and usability of ML-based queries, recent
work has exposed these ML methods as user-defined functions
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(UDFs) in query systems, in which MLmethods are called as opaque
functions. This body of work has also proposed a number of opti-
mizations to reason about these opaque functions, such as using
embeddings [14] or indexes [9] to group similar rows together.
Other work focuses on accelerating approximate queries over un-
structured data [3, 11–13, 19].

In this work, we instead propose a novel data model, DM, that
allows application users to directly query ML model outputs as
standard SQL tables, through virtual columns and virtual rows. We
further propose novel caching and parallelization optimizations for
ML-based queries. Finally, we show that a range of prior optimiza-
tions can be implemented under DM efficiently. We implement DM
and these optimizations in AIDB, a novel, open-source system for
ML-based queries. To the best of our knowledge, AIDB is the first
open-sourced, fully general ML-based query engine.

In DM, a schema consists of a table identifying the underlying
unstructured data, derived tables generated by ML methods, and
user-defined metadata. The only required table is the unstructured
data blob table, which contains a unique identifier for every un-
structured data blob. Then, any number of tables can be derived
from existing tables. These tables are generated by taking as input
any other tables’ column and outputs one or more rows against a
fixed schema, generated from an ML model.

As an example of a DM schema, consider the case of video ana-
lytics. The unstructured data blob identifier might be the frame id
(which has a one-to-one correspondence with timestamps). Then,
the first ML model may be an object detection model, which takes
as input the frame id and outputs object types and positions. The
second model could be a color identification model, which takes
in a frame id and car position and outputs a color. Finally, the sys-
tem administrator can associate metadata with any table, such as
timestamps with frame ids.

The overhead for specifying the mappings via ML methods is
low: as few as 10 lines of configuration code per table. Furthermore,
once the database administrator defines the unstructured blob table
and the derived tables, application users can simply specify queries
against the schemas of the tables. In particular, the application user
does not need to reason about opaque UDFs.

Given the mappings between tables via the ML models, we pro-
pose novel caching and parallelization techniques. As the mapping
of the ML models is fully specified, given a set of input rows, we
can assume that the output is fixed. Thus, AIDB can simply cache
the output of any ML model execution, partially materializing the
virtual rows. In particular, many previous systems require complex
reasoning about UDFs for caching, which is challenging for systems
builders to implement and for users to reason about performance.
Furthermore, since the generation across rows is independent, AIDB
can parallelize execution trivially. We show that AIDB can leverage
these techniques for up to 3× improved query execution costs after
executing even a single query.

In addition to caching and parallelization optimizations, we pro-
pose a method of generating query execution plans for arbitrary
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Figure 1: Example of a DM schema for traffic analysis. The

analyst can define an object detection table and a car make/-

color table. These tables will be populated via ML models.

approximate linear aggregation and selection queries. Since each
virtual row can be deterministically generated, AIDB generate query
plans by sampling unstructured blob ids and re-weighting samples
to obtain an unbiased estimate of the statistic of interest. We extend
this method to arbitrary approximate selection queries [12]. We
further propose a novel, incremental query processing technique
in which rows are incrementally generated as queries are executed
and used in subsequent queries for improved performance.

We evaluate AIDB on video, image, and text datasets, showing
its applicability to a wide range of scenarios. We compare AIDB
to existing systems and show that it can answer a wider range of
queries and outperform these systems by up to 300×.

2 DM

To address the difficulties of querying unstructured data with UDFs,
we propose DM, a data model for interacting with ML models via
declarative queries. DM consists of three components: base table(s)
with references to the underlying unstructured data, mappings of
ML model input columns and output columns, and user-specified
metadata. By fully specifying ML models through the schema, ap-
plication users need not reason about opaque UDFs.

In the remainder of this section, we first walk through a concrete
video analytics example. We then describe the exact semantics of
DM. We conclude this section by describing how to generate rows
against DM schemas and further examples.

2.1 Video Analytics Example

We first describe an example of an urban planner studying traffic
patterns. Concretely, suppose the urban planner has access to two
video feeds, numbered 1 and 2. The urban planner wishes to batch
analyze the data from Monday and saves 10,000 frames from each
feed, to study traffic patterns across these cameras.

The database administrator first specifies the base tables refer-
encing the underlying video. The primary key for the base table is a
composite key with the video feed identifier and the frame number.

Then, the database administrator specifies that an object detec-
tion model takes as input a unique video frame, as specified by the
composite key. Given the frame, the object detection model outputs
zero or more row with the following schema: an opaque object
identifier (such as an auto-increment primary key), object type
(among a fixed list), xy coordinates (four floating point numbers),
and the confidence (a floating point number between 0 and 1).

As a final extension, the urban planner may be interested in
the make and model of cars. To classify the cars, the database
administrator can register a classification model which takes as

input the frame identifier, object identifier, and xy coordinates.
Given these inputs, the model will output no rows if the object type
is not a car and will output a single row with the predicted make
and model if the object type is a car.

We show a diagram of the schema and mappings in Figure 1.

2.2 DM Specification

We now describe the full specification of DM. As mentioned, DM
has three components: the base table(s) referencing the underlying
unstructured data, the mappings between ML models, and user-
specified metadata. We describe each in turn.
Base tables. DM’s first component are base tables that provide
identifiers for the underlying unstructured data. Each base table
contains a primary key which references an unstructured data blob.
The base tables are fully materialized. For example, the base table
in the video example has a composite primary key that references
the camera id and the frame id. A DM schema can have more than
one base table if there are multiple sources of underlying data.
MLmodel mappings. DM’s second component are the mappings
between ML model inputs and outputs. In DM, every ML model can
have one or more columns (possibly across tables) as input. The
output are one or more columns (also possibly across tables). Every
row as input produces zero or more rows as output.

DM requires that the mappings between columns be non-cyclical.
In particular, construct a graph G with a directed edge from column
𝑐𝑖 to 𝑐 𝑗 if there is an ML model mapping with input 𝑐𝑖 and output
𝑐 𝑗 . DM requires that G be a directed, acyclic graph (DAG).

DM also requires that every generated column have a parent
and that every column with no parents be fully materialized. The
columns with no parents are typically base table columns.

In the urban planning example, the object detection model maps
the frames to objects. As a frame may contain no object or many
objects, zero or more rows can be generated. The car make/model
classification model maps the frame and object to the prediction of
the make/model.
User-defined metadata. DM’s final component are user-defined
metadata columns and tables. In many cases, the application user is
interested in analyzing the semantic contents of the unstructured
data in conjunction with metadata, such as timestamps. As a result,
DM allows every table to have additional columns with user-defined
metadata and additional tables that are user defined.

This metadata is often application specific. As mentioned, times-
tamps are a common piece of metadata. Other metadata could
include the object types of an object detection model or metadata
about video conferencing participants.

3 AIDB’S OVERVIEW

We have created AIDB, an open-source system for implementing
and executing DM queries. AIDB supports both exact queries and
approximate queries.

AIDB consists of many of the same components a traditional
query engine contains, including a query parser, optimizer, and
execution engine. However, the cost of ML models necessitates
changes in the architecture, particularly for approximate queries.
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One major difference of note is that AIDB contains a structured
query engine as part of its architecture.

AIDB is implemented in Python for ease of integration with ML
model frameworks. AIDB also provides a command line interface
for application users to use standard SQL for specifying queries.
AIDB architecture. As mentioned, AIDB contains many of the
same architectural components a standard query engine contains,
including a query parser, optimizer, and execution engine. Several
components are similar to standard structured query engines, such
as query parsing. However, due to the cost of ML model execu-
tion, AIDB aggressively caches ML model outputs; we describe
the caching algorithm below. This caching causes a number of
architectural differences, which we highlight below.

First, AIDB contains a structured database for its caching layer.
As part of query execution, AIDB will typically execute a structured
query against the structured query engine as its first step. To under-
stand why, consider a limit query searching for 10 common events.
If AIDB has executed previous queries that match the predicate,
AIDB can directly return cached results for the limit query. We
describe AIDB’s caching and query execution below.

Second, AIDB will execute ML models by calling external func-
tions. To do so, AIDB provides an API for arbitrary ML models.
Database administrators must provide the callback or external ser-
vice. We describe the API below.
Specifying DM schemas. To specify DM schemas, AIDB accepts
standard configuration formats (YAML). The database administrator
must specify the table schemas, input and output columns for the
ML models, and the ML model execution logic. For all base tables,
the database administrator must provide the full table.

In order to specify the ML model mapping and execution, the
database administrator must specify the input/output columns for
ML models and the ML model execution logic. To specify the ML
model execution logic, the database administrator must either im-
plement a Python or REST API. The Python API takes as input
a Pandas dataframe with the input columns and their values and
outputs the output columns and its values. The REST API takes the
same inputs and outputs but as JSON instead.
Generating DM rows. Given a DM specification, we describe how
a system could materialize the rows against the schema. Recall that
the graph G specifies the relationships between the columns. The
graph G has nodes 𝑐𝑖 which represent the columns in the schema.
We further associate every edge 𝑒 𝑗 with an ML model𝑚𝑘 .

Suppose the system wishes to materialize rows against a set of
columns C = {𝑐𝑖 }. The first step is to recursively find all parents
of 𝑐𝑖 ∈ C. Denote the parents and the columns to materialize as
C′. The next step is to collect the minimal set of edges between C′

and the ML models associated with these edges, M = {𝑚𝑘 }. Then,
for every base table row, we execute the ML models in order of a
topological sort of the columns C′ by walking down the edges.

4 OPTIMIZED QUERY EXECUTION

Given a DM schema, AIDB can execute any query by first fully ma-
terializing all rows in all tables in the schema and using a standard
structured query execution engine. However, this is prohibitively
expensive in many applications. To address the cost of executing

queries, we describe AIDB’s novel optimizations for executing exact
and approximate queries below.

As described above, AIDB could fully materialize all rows to
execute exact queries. However, this process is inefficient for two
reasons: it will re-materialize previously materialized rows and not
all rows are necessary for answering queries. As such, AIDB will
cache the results of ML model execution and execute all computa-
tion on structured metadata before executing ML models.
Caching. As mentioned, prior work exposes ML model outputs
as UDFs. Unfortunately, UDFs are difficult to reason about. For
example, UDFs in general may not be deterministic.

In contrast, DM specifications contain the exact relationship
between input columns and output columns. Since we assume ML
models are deterministic, AIDB can simply cache the output of ML
models as materialized rows. However, ML models can potentially
output zero rows. For example, an object detection method will
output zero rows for a frame of an empty street (i.e., a street with no
objects). Similarly, a named entity recognition model may output
zero rows for a sentence with no named entities.

Since ML models can potentially output zero rows, AIDB must
mark which input rows have been processed by which ML models.
AIDB uses an auxiliary table per ML model to do so, where the table
columns are the ML model input columns along with a Boolean
column specifying if the ML model has been executed over the
input row. The simplicity in caching design is a result of foregoing
opaque UDFs.
Execution. To execute exact queries efficiently, AIDB chooses
queries plans that places all structured computation first and per-
forms lazy execution. AIDB does in this in three ways.

First, when filtering by a metadata column, AIDB will first per-
form this filtering operation before executing the remainder of the
computation required to answer the query. For example, if a query
over a video only requires information in the first 10 minutes of
the video, AIDB will only materialize columns and rows associated
with the first 10 minutes of the video.

Second, AIDB will first check its cache for any cardinality limited
queries (i.e., queries with a LIMIT clause) to see if the query can be
answered without further ML model execution. By doing so, AIDB
can reuse work and avoid expensive materialization.

Finally, AIDB will only execute the ML models necessary to an-
swer a given query. For example, in the traffic analysis use case, if
the query does not touch the car color column, the color classifica-
tion model will not be executed.
Optimized approximate queries. In addition to executing ex-
act queries, AIDB supports approximate queries. In contrast to
many structured approximate query systems, the rows are not
materialized ahead of time. Furthermore, in contrast to many un-
structured approximate query systems that answer specific queries
[3, 10, 11, 13, 19], AIDB is designed to answer arbitrary approximate
linear aggregation [13] and selection queries [12].

We note that DM rows are not materialized ahead of time. As
such, standard techniques for pre-computing statistics or sum-
maries cannot be used. As such, AIDB must decide how to sample
without this precomputed information.



CIDR ’23, 2023, Amsterdam Daniel Kang

One possible solution would be to uniformly sample from the
base table records and computing the average from the sampled
rows. However, uniform sampling can be biased for queries over
derived columns. This is because MLmodels can generate a variable
number of rows, so sampling uniformly from the base tables does
not necessarily result in a uniform sample among the derived rows.
For example, sampling uniformly at random from frames will not
give a uniform sampling of cars in a video, as a frame can have
multiple cars, when computing a statistic about cars in a video.

AIDB uses stratified sampling by default to answer approximate
queries. Stratified sampling splits the samples into disjoint sets
(call strata), computes the statistic of interest among the strata, and
combines the results [16].

AIDB leverages stratified sampling to produce unbiased results
with valid confidence intervals. To do so, it groups the rows of
interest by the unstructured blob ids that generated those rows. It
then groups these groups by the number of records each blob id
generates. The final set of records (per blob id with the same number
of generated records) consists of the final strata. By groupings such
records together, AIDB avoids the potential bias from sampling
different numbers of records per unstructured data blob.

5 EVALUATION

To evaluate AIDB, we deployed it on a standard video analytics
dataset. We used the widely studied night-street dataset [5, 11,
20]. We show that AIDB can answer arbitrary approximate queries
that prior work does not support and can accelerate exact queries
with its optimized plans.
Experimental setup. Wedeployed twoMLmodels on night-street
to demonstrate the versatility of AIDB. We first deployed a state-of-
the-art object detection model to extract object types and positions
in the video [8]. We then deployed a model to determine car color
by averaging the pixel values.

The primary metric we use is total dollar cost. AIDB executes
models via external services, which are typically far more expensive
than the cost to host AIDB. Furthermore, external services often
do not have any latency service-level agreements [6], so latency is
not a primary constraint for unstructured data queries. We use the
dollar costs of the Google vision API for our experiments.
Approximate queries. We first show that AIDB can answer ap-
proximate queries that prior systems cannot answer with valid con-
fidence intervals. We consider two queries: the average x-position
of cars and the number of blue cars, both at the box level.

We compare against exhaustive materialization as prior work
in AQP over unstructured data do not support these queries. For
both queries we target an error of 5%. As shown in Figure 2, AIDB
outperforms exhaustive materialization by up to 300×.
Exact queries. We also show that AIDB can effectively answer
exact queries with its caching and exact query planning algorithms.
To do so, we consider a sequence of queries: executing the two
queries above, then executing a selective limit query searching for
10 instances of red cars.

We show the cost of the final query compared to a sequential
scan without caching in Figure 3. As shown, AIDB’s exact query
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Figure 2: AIDB vs exhaustive materialization for an aggrega-

tion query. As shown, AIDB can outperform by up to 300×
by supporting arbitrary linear aggregation queries.
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Figure 3: AIDB vs early termination for a limit query. We

show the query cost of AIDB after running zero, one, or two

approximate queries first. The cost of limit queries for AIDB

decreases as other queries are executed first.

optimization techniques can improve performance by up to 3× after
running even a single query.

6 RELATEDWORK

Structured AQP. AQP techniques can be divided into online and
offline techniques [18]. Both online and offline techniques assume
that records are already present and often rely on precomputed
information to accelerate queries [1, 2, 17, 18]. These techniques do
not directly apply to the setting where the overwhelming majority
of the cost is in executing expensive ML methods. In AIDB, we
provide a novel method of stratified sampling for expensive, ML-
based queries.
Expressing ML-based queries. Systems builders have created
a number of systems for expressing ML-based queries. The most
common method of incorporating ML models for queries is to
expose them as UDFs [3, 9, 19]. UDFs require users and systems to
reason about opaque functions, which can be challenging. Other
systems, such as BlazeIt [10], have custom schemas, which are
inflexible. In contrast, DM allows database administrators to set
application-specific schemas over any ML-based queries.
Optimizations for ML-based queries. A large body of recent
work aims to optimize ML-based queries. One line of work aims to
optimize specific queries, ranging from selection queries [3, 11, 19],
aggregation queries [10], aggregation queries with predicate [13],
limit queries [9, 10], tracking queries [4], and top-k queries [7].
These query processing algorithms can be implemented in AIDB.
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