
EFFICIENT AND ACCURATE SYSTEMS FOR QUERYING UNSTRUCTURED
DATA

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Daniel Kang

December 2022

© 2022 by Daniel Kang. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.
http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: https://purl.stanford.edu/fk030tb6783

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
https://purl.stanford.edu/fk030tb6783

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Matei Zaharia, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tatsunori Hashimoto, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Peter Bailis

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Volumes of unstructured, non-tabular data (e.g., videos, audio, and text) have been increas-

ing exponentially. This data is exciting to scientific researchers, business analysts, and data

scientists for downstream analyses. For example, video can be used by urban planners to

analyze traffic, ecologists to understand hummingbird-bacteria microcosms, and data scien-

tists to analyze customer behavior in stores. However, this is impossible to do manually at

scale: exabytes of data are generated per day, outstripping manual processing capacity.

In recent years, automatic analysis over this unstructured data has become possible

via machine learning (ML). Analysts can use ML to extract structured information from

these unstructured sources, such as object types and location from a video. The structured

information can subsequently be used in downstream analysis, e.g., the urban planner can

count the number of cars that passed by an intersection.

Unfortunately, using ML for these analyses is challenging. Deploying ML is prohibitively

expensive for many organizations: naively analyzing a year of video from a small town can

cost millions in cloud compute credits. ML methods are also unreliable, returning incorrect

results, which can lead to downstream errors. Finally, deploying ML for analytics requires

knowledge of deep learning, data systems, programming, and other technical skills.

In light of these challenges, we make two observations: many applications can tolerate

approximations, if there are guarantees on accuracy, and methods for answering unstructured

data queries range by up to 10 orders of magnitude in cost.

In this dissertation, we develop systems and algorithms for efficient and reliable unstruc-

tured data analytics, leveraging the two observations. Instead of returning exact answers, we

return approximate answers generated by cheap approximations to expensive ML methods.

Our systems can return statistically valid answers on a wide range of query types, including

selection, aggregation, and limit queries. Furthermore, our systems can be up to orders of

magnitude cheaper than standard methods of answering queries.

iv

We further develop systems for monitoring and quality assurance over ML pipelines.

In addition to being deployed for analytics, ML is increasingly being deployed in mission-

critical settings, such as in autonomous vehicles. Despite being deployed in these settings,

models are often unmonitored and the training data is often not vetted.

To address this, we propose abstractions for monitoring and quality assurance of ML

deployments: model assertions and learned observation assertions. These assertions allow

domain experts to specify errors, both at deployment time and over the data used to train

these models. Assertions can find errors with both high recall (75%) and high precision

(100%) in real-world autonomous vehicle, video analytics, and medical datasets.

The systems and abstractions in this dissertation have been deployed in a variety of

real-world settings, including for autonomous vehicles and ecological analysis.

v

Acknowledgements

Many acknowledgements sections begin by saying there are too many to list, which I have

been confused by. After attempting to write my acknowledgements, I realize there are too

many people who have helped in my PhD and my memory is lacking. These acknowledge-

ments are a small sample of those who have made my PhD possible.

I’ve had the great pleasure of being advised by three professors: Peter Bailis, Tatsunori

Hashimoto, and Matei Zaharia. I began my PhD in the rotation program, unsure if I even

wanted to do a PhD. My first rotation wasn’t a good fit and I was considering leaving the

program. Fortunately, several of my friends told me to stay for another rotation. That

rotation was with Peter and Matei.

Peter and Matei both have incredible energy, albeit in different ways. When I first

started, Peter and Matei stayed with me in lab late into the night working with me on

my first paper draft. That draft eventually became my first full paper and one of my few

papers that was accepted on first submission. Peter also worked with me on creating my

first conference presentation over the course of two days at my first conference. I’ve learned

so much by working with Peter and Matei in my six years at Stanford.

Their generosity also deserves its own mention. In the middle of my PhD, my mother

became gravely ill and I had to take an extended period of time off. I was expecting to take

a leave of absence. After all, which job lets you take off months at a time? But when I spoke

to them about taking leave, they told me I could stay enrolled. It wasn’t even a question to

them.

I’ve also had the fortune of working with Tatsunori Hashimoto at my time at Stanford.

I first met Tatsu at MIT, when I was doing undergraduate research. Tatsu took a bet on

me and was the first person to actually teach me how to do research. After he started at

Stanford, I began to work with him closely on the statistical aspects of my work. I didn’t

understand how useful complementary expertise could be until after I worked with Tatsu.

vi

Aside from my advisors, I’ve had the opportunity to work with a number of other re-

searchers. I’ve co-authored with Firas Abuzaid, Nikos Arechiga, Peter Bailis, Cody Coleman,

Alex Derhacobian, John Emmons, Tadashi Fukami, Edward Gan, John Guibas, Tatsunori

Hashimoto, Trevor Hebert, Animesh Koratana, Christos Kozyrakis, Peter Kraft, Ankit

Mathur, Deepak Narayanan, Luigi Nardi, Kunle Olukotun, Shoumik Palkar, Sudeep Pil-

lai, Deepti Raghavan, Francisco Romero, Chris Ré, Kaoru Tsuji, Teja Veeramacheneni,

Matei Zaharia, Jian Zhang, and Tian Zhao. Time flies when you’re working with such great

colleagues and the six years have flown by.

I wouldn’t have been as productive as I had without the support of my labmates. I’ve

had the fortune to co-author with several of them, including one hail mary paper to travel

to Japan (the paper got in, but our plans were scuttled due to COVID). But aside from

that, my labmates have given me amazing feedback on my papers, talks, and research in

general. My original office, Gates 433, with Edward Gan, Kexin Rong, and Sahaana Suri,

was especially supportive. I also want to thank my wonderful labmates Firas Abuzaid,

Lingjiao Chen, Cody Coleman, Trevor Gale, Fiodar Kazhamiaka, Omar Khattab, Peter

Kraft, Shoumik Palkar, Deepti Raghavan, Keshav Santhanam, Kai Sheng Tai, Pratiksha

Thaker, James Thomas, and Gina Yuan.

During my time at Stanford and beyond, I’ve had incredible support from my friends.

If it weren’t for them, I’m not sure that I would have even stayed to complete my PhD!

There are simply too many to thank and I’m not sure if I can even list them all. My friends

from all stages of my life have helped me immensely. Many of them I’ve known since high

school, before I even started research: Andrew Cheong, the Gerr sisters, Manna, Siddharth,

Stephen, Olivia, and many others. I’ve met so many people through the different stages

of my life since then: Alex and Leon (apologies for the link spam), Cole and Hannah (I’ll

shamelessly take credit for introducing them), John, Alice, Anna, and Chris (thanks for

putting up with my hot takes in book club), Max, Sumit, Judy, Tong, and many others.

And finally, I wouldn’t be here with my family. My family has supported me long before

my PhD even began. Even in the depth of her illness, my mother told me to focus on my

research. While she won’t see the publication of this thesis I know she would be proud.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Challenges to Unstructured Data Analytics 2

1.1.1 The High Cost of Unstructured Data Analytics 2

1.1.2 The Unreliability of Unstructured Data Analytics 3

1.1.3 The Programming Difficulty of Unstructured Data Analytics 4

1.2 Efficient and Reliable Unstructured Data Queries 5

1.2.1 Efficient ML-based Queries . 5

1.2.2 Efficient and High Quality Proxy Score Generation 7

1.2.3 Monitoring and Quality Assurance . 8

1.3 Organization . 10

2 Background 11

2.1 Example Applications . 11

2.1.1 Traffic Analysis . 11

2.1.2 Ecological Analysis . 12

2.1.3 News Analysis . 12

2.2 Deploying ML for Analytics . 13

2.3 Related Work . 14

2.3.1 Approximate Query Processing . 14

2.3.2 Retrieval . 14

viii

3 Proxy-based Algorithms and Systems 16

3.1 NoScope . 17

3.1.1 NoScope Architecture and Techniques 19

3.1.2 Model Specialization . 20

3.1.3 Evaluation . 22

3.1.4 Discussion . 23

3.2 Approximate Selection with Guarantees . 24

3.2.1 Use Cases . 27

3.2.2 Approximate Selection Queries . 29

3.2.3 Algorithm Overview . 32

3.2.4 Estimating proxy thresholds . 34

3.2.5 Evaluation . 42

3.2.6 Discussion . 47

3.3 Approximate Aggregation with Predicates . 48

3.3.1 Overview and Query Semantics . 51

3.3.2 Query Formalism . 52

3.3.3 Algorithm Description and Query Processing 53

3.3.4 Theoretical Analysis . 56

3.3.5 Evaluation . 61

3.3.6 Discussion . 65

3.4 BlazeIt . 65

3.4.1 BlazeIt System Overview . 67

3.4.2 FrameQL: Expressing Complex Spatiotemporal Visual Queries 68

3.4.3 Query Optimizer Overview . 71

3.4.4 Optimizing Aggregates . 72

3.4.5 Optimizing Limit Queries . 76

3.4.6 Evaluation . 78

3.4.7 Discussion . 84

4 Generating Proxy Scores Efficiently 85

4.1 TASTI: Semantic Indexes for Unstructured Data 85

4.1.1 Overview and Example . 87

4.1.2 Index Construction . 91

ix

4.1.3 Query Processing with TASTI . 94

4.1.4 Theoretical Analysis . 97

4.1.5 Evaluation . 99

4.1.6 Discussion . 105

4.2 Smol: Hardware Efficient Proxy Generation 106

4.2.1 Measurement Study of End-to-End DNN Inference 109

4.2.2 Smol Overview . 111

4.2.3 Cost Modeling for Visual Analytics . 114

4.2.4 Input-aware Methods for Accuracy and Throughput Trade Offs 118

4.2.5 An Optimized Runtime Engine for End-to-End Visual Inference 120

4.2.6 Evaluation . 124

4.2.7 Discussion . 129

5 Specifying Errors in ML Deployments 130

5.1 Model Assertions . 130

5.1.1 Model Assertions . 133

5.1.2 Using Model Assertions for Active Learning with BAL 137

5.1.3 Consistency Assertions and Weak Supervision 139

5.1.4 Evaluation . 142

5.1.5 Discussion . 147

5.2 Learned Observation Assertions . 147

5.2.1 Example and Background . 150

5.2.2 System Overview . 152

5.2.3 Learned Observation Assertions . 154

5.2.4 Feature Distributions . 156

5.2.5 Scoring Relative Plausibility . 158

5.2.6 Applications . 159

5.2.7 Evaluation . 161

5.2.8 Discussion . 166

6 Discussion 167

6.1 Future Directions . 168

x

List of Tables

1.1 Costs of executing queries over unstructured data via self-hosted methods, an

ML service, and using human annotators compared to the cost of executing

a structured query over similar data. 3

3.1 Video streams and object labels queried in our evaluation. 22

3.2 Notation Summary . 34

3.3 Summary of datasets, oracle models, proxy models, and true positive rates. . 42

3.4 Summary of distributionally shifted datasets. These shifts are natural (weather

related, different day of video) and synthetic. 44

3.5 Achieved accuracy of queries when using the empirical cutoff method and

SUPG on data with distributional shift. The naive algorithm deterministi-

cally fails to achieve the targets, i.e., has a failure rate of 100%. 46

3.6 Summary of notation. 53

3.7 FrameQL’s data schema contains spatiotemporal and content information

related to objects of interest, as well as metadata (class, identifiers). 69

3.8 Additional syntactic elements in FrameQL. 70

3.9 A comparison of object detection methods, filters, and speeds. More accurate

object detection methods are more expensive. 71

3.10 Video streams and object labels queried in our evaluation. 79

3.11 Average error of 3 runs of query-rewriting using a specialized NN for counting.

These videos stayed within ε = 0.1. 82

3.12 Estimated and true counts for specialized NNs run on two different days of

video. In parentheses are the day of video. 82

3.13 Query details and number of instances for limit queries. 83

xi

4.1 Throughput of ResNet-50 on the T4 with three different execution environ-

ments. Keras was used in [11]. The efficient use of hardware can result in

over a 17× improvement in throughput. 110

4.2 Throughput of various models on the T4 GPU (classification models on the

top and detection models on the bottom) [178]. As shown, all but the largest,

state-of-the-art detection models are preprocessing bound. 112

4.3 Throughput and top-one accuracy for ResNets of different depths. As shown,

there is a trade off between accuracy and throughput (i.e., computation). . . . 115

4.4 Measurements of preprocessing, DNN execution, and pipelined end-to-end

DNN inference for three configurations of DNNs and input formats: balanced,

preprocessing-bound, and DNN-execution bound. As shown, Smol matches

or ties the most accurate estimate for all conditions. 115

4.5 A list of popular visual data formats and their low-fidelity features. 124

4.6 Summary of dataset statistics for the still image datasets we used in our

evaluation. The datasets range in difficulty and number of classes. bike-bird

is the easiest dataset to classify and imagenet is the hardest to classify. . . . 125

4.7 Effect of training procedure and input format on accuracy for ResNet-50 and

ResNet-34 on imagenet. Smol can achieve an accuracy throughput trade-offs

by changing the input format, achieving no accuracy loss for easier datasets. . 128

5.1 A summary of tasks, models, and assertions used in our evaluation. 142

5.2 Number of lines of code (LOC) for each assertion. All assertions could be

written in under 60 LOC including helper functions. The assertion main

body could be written in under 25 LOC in all cases. 144

5.3 Precision of model assertions deployed on 50 randomly selected examples.

Model assertions can be written with 88-100% precision across all domains. . 144

5.4 Accuracy of pretrained and weakly supervised models. Weak supervision can

improve accuracy with no human-generated labels. 147

5.5 Table of syntactic elements in Fixy’s DSL. 156

5.6 Description of features we used in this evaluation. Model only and count were

manually specified features. 162

5.7 Precision at top 10, 5, and 1 of Fixy and ad-hoc MA baselines for finding

tracks missed by humans. Fixy outperforms baselines by up to 2×. 163

xii

List of Figures

1.1 A confident error from a state-of-the-art model for detecting birds. The con-

fidence is in the top 99.9th percentile in the dataset. 4

1.2 An object detection model erroneously missing the prediction of the car in

the second frame. Even widely used models (SSD) fail simple checks, such as

temporal consistency. 8

1.3 A motorcycle missed by a human annotator in a self-driving car dataset. The

dataset was generated by a leading label vendor, showing that even best-in-

class services can have errors in “gold” labels. 9

3.1 NoScope is a system for accelerating neural network analysis over videos via

inference-optimized model search. Given an input video, target object, and

reference neural network, NoScope automatically searches for and trains a

cascade of models that can reproduce the binarized outputs of the reference

network with high accuracy—but up to three orders of magnitude faster. . . . 20

3.2 Accuracy vs. speedup achieved by NoScope on each dataset. Accuracy is

the percent of correctly labeled time windows, and speedup is over YOLOv2. 23

3.3 Box plot of achieved precisions of naive sampling from recent work [94, 124]

and our improved algorithm. The naive algorithm returns precisions as low

as 65% for over half the runs. In contrast, our algorithms (SUPG) achieve

the precision target w.h.p. 25

3.4 Sample matching (a) and non-matching (b) frames for a selection query over

a video stream used by our biologist collaborators. DNNs can serve as proxies

to identify hummingbirds as shown in (a), but the confidence scores can be

unreliable. 27

3.5 Syntax for specifying approximate selection queries. 29

xiii

3.6 SUPG algorithms use sampled oracle labels and proxy scores to identify a

subset of records that satisfy a recall or precision target with high probability.

Naive methods use limited oracle samples less efficiently and can fail to achieve

the target recall or precision. 32

3.7 Precision box-plot of 100 trials of U-NoCI and SUPG’s importance sampling

algorithm with a precision target of 90%. U-NoCI can fail up to 75% of the

time. Furthermore, it can return precisions as low as 20%. 45

3.8 Recall of 100 trials of U-NoCI and SUPG’s sampling algorithm with a recall

target of 90%. U-NoCI can fail up to 50% of the time and even catastrophi-

cally fail on ImageNet, returning a recall of as low at 20%. 45

3.9 Targeted precision vs achieved recall. Both importance sampling methods

outperform U-CI in all cases. Two-stage importance sampling outperforms

all methods and matches the one-stage importance sampling for ImageNet. . 47

3.10 Targeted recall vs precision of the returned set. Up and to the right indicates

higher performance. Importance sampling outperforms or matches U-CI in

all cases. Our sqrt scaling outperforms proportional scaling for importance

sampling in all cases, except for high recall settings. 48

3.11 Syntax for ABae. Users provide a statistic to compute, an expensive predi-

cate, an oracle limit, proxy scores, and a success probability. As is standard

for aggregation queries, users may specify a group by key. 52

3.12 Sampling budget vs RMSE for uniform sampling and ABae. ABae outper-

forms on all budgets and datasets we evaluated on. ABae can outperform

by up to 1.5× on RMSE at a fixed budget and achieve the same error with

up to 2× fewer samples. 63

3.13 Sampling budget vs normalized Q-error for uniform sampling and ABae, with

the standard deviation shaded. We see that ABae outperforms on Q-error.

The same trends hold for all other datasets. 64

3.14 Sampling budget vs CI width for uniform sampling and ABae. ABae can

outperform by up to 1.5× on CI width at a fixed budget and achieve the same

width with up to 2× fewer samples. 64

3.15 Schematic of the naive method of querying video and BlazeIt. BlazeIt

does not require writing complex code and does not require pre-materializing

all the tuples. 66

xiv

3.16 FrameQL syntax. As shown, FrameQL largely inherits SQL syntax. 70

3.17 End-to-end runtime of aggregate queries where BlazeIt rewrote the query

with a specialized network, measured in seconds (log scale). BlazeIt out-

performs all baselines. All queries targeted ε = 0.1. 81

3.18 Sample complexity of random sampling and BlazeIt with control variates.

Control variates via specialized NNs consistently outperforms standard ran-

dom sampling. Note the y-axis is on a log scale. 82

3.19 End-to-end runtime of baselines and BlazeIt on limit queries; BlazeIt

outperforms all baselines. The y-axis is log-scaled. All queries looked for 10

events. 84

4.1 TASTI system overview. 89

4.3 Number of target labeler invocations for baselines and TASTI for approxi-

mate aggregation queries (lower is better). TASTI outperforms baselines in

all cases, including prior, per-query proxy state-of-the-art by up to 2×. 104

4.4 False positive rate for recall-target SUPG queries (lower is better). We show

the performance of baselines and TASTI. As shown, TASTI outperforms

baselines in all cases. 105

4.5 Number of target labeler invocations for baselines and TASTI for limit queries

(lower is better). TASTI outperforms baselines in all cases, including prior

state-of-the-art by up to 34×. 106

4.6 Breakdown of end-to-end inference of ResNet-50 and 18 for a batch size of 64

on the inference-optimized AWS g4dn.xlarge instance type. The execution

of the DNN is 7.1× and 22.9× faster than preprocessing data for ResNet-50

and 18 respectively. 110

4.7 System diagram of Smol. As input, Smol takes a set of DNNs, visual input

formats, and optional constraints. As output, Smol returns an optimal set

of plans or plan, depending on the constraints. Smol will generate plans,

estimate the resources for each plan, and select the Pareto optimal set of plans.111

4.8 Examples of partial decoding for images. On the left, the ROI is the central

crop of the image. For JPEG images, Smol can decode only the macroblocks

that intersect the ROI. For image formats that do not allow for independently

decoding macroblocks, Smol can partially decode based on raster order (right).123

xv

4.9 Throughput vs accuracy for the naive baseline, Tahoma, and Smol on the

four image datasets (Pareto frontier only). Smol can improve throughput by

up to 5.9× with no loss in accuracy. 127

4.10 Query execution time vs requested error for BlazeIt and Smol on the

four video datasets we evaluated. As shown, Smol consistently outperforms

BlazeIt by using more accurate specialized NNs, which reduces sampling

variance, and lower resolution data, which reduces preprocessing costs. 129

5.1 Top row: example of flickering in three consecutive frames of a video. The

object detection method, SSD [120], failed to identify the car in the second

frame. Bottom row: example of correcting the output of a model. The car

bounding box in the second frame can be inferred using nearby frames based

on a consistency assertion. 132

5.2 System diagram of how model assertions can integrate into the ML devel-

opment/deployment pipeline. Users can collaboratively add to an assertion

database. We also show how related work can be integrated into the pipeline. 136

5.3 Percentile of confidence of the top-10 ranked errors by confidence found by

OMG for video analytics. The x-axis is the rank of the errors caught by

model assertions, ordered by rank. The y-axis is the percentile of confidence

among all the boxes. Mdel assertions can find errors where the original model

has high confidence (94th percentile). 145

5.4 Performance of random sampling, uncertainty sampling, uniform sampling

from model assertions, and BAL for active learning. BAL improves accuracy

on unseen data and can achieve an accuracy target (62% mAP) with 40%

fewer labels compared to random and uncertainty sampling for night-street.

BAL also outperforms both baselines for the NuScenes dataset. 146

5.5 Example of human labels (orange) and missing labels (red) in the Lyft Per-

ception dataset. The black truck highlighted is within 25m of the AV. Such

errors can cause downstream issues with perception and planning systems. . . 148

5.6 Example of the factor graph (top) and corresponding LIDAR point cloud

data (bottom). The track is in black and other human-proposed labels are in

orange for reference. 150

xvi

5.7 System diagram for Fixy. Users provide features over perception data (e.g.,

box volume) and associations between observations. Given these inputs, Fixy

will learn feature distributions, generate graphical models, score new data,

and output potential errors. 152

5.8 Example of a motorcycle (highlighted in red) missed by human proposals. We

show both the LIDAR point cloud data (top) and the camera view (bottom). 157

5.9 Example of an unlikely track. Predictions are inconsistent within a track,

suggesting that they are spurious. 160

5.10 Example of missing human label within a track that Fixy can find. The left

panel only contains an ML model prediction while the right contains both a

human label and an ML model prediction. 160

5.11 Example of a low probability bundle. The box of the person and truck highly

overlap, but are strongly inconsistent in box volume. 160

5.12 Examples of labeling errors in the Lyft dataset. The missing objects in these

examples can be within 20 meters the autonomous vehicle and several are in

motion: vehicles in motion are the most important to detect. 163

5.13 Example of a model error (in black) in the Lyft dataset not found by ad-hoc

model assertions. We show ground-truth boxes from human labels in orange

for reference. The erroneous prediction overlaps across frames, but is not

consistent. Fixy can find such errors as they produce unlikely values under

learned feature distributions. 165

xvii

Chapter 1

Introduction

Unstructured (non-tabular) data in the form of videos, images, text, and audio, are now the

largest forms of data produced and rapidly growing in size. As an example, a single fleet of

vehicles (the Tesla fleet) can already produce exabytes of video data per day. Furthermore,

video data already accounts for 88% of internet traffic [131]. Beyond data from vehicles,

this data comes from street cameras, video conferencing meetings, personal cameras, forums,

and social media.

As a parallel trend, programmatic capabilities of extracting semantic information from

these unstructured data sources have dramatically improved. These programmatic capabil-

ities have largely been in the form of powerful machine learning (ML) models. ML models

can now extract object types and positions from images [150], actions from video [77], sen-

timent from text [186], and other information. In addition to ML models, there has been a

proliferation of services providing high-quality human labels over unstructured data.

Given these two trends, analysts and scientists are increasingly interested in automati-

cally answering queries over unstructured data to understand the real world. Urban planners

can understand traffic patterns from camera feeds; social scientists can understand how trust

in science changes after major world events from newspaper scans; journalists can under-

stand dynamic situations from social media posts.

Unfortunately, answering unstructured queries is challenging for three reasons. First,

extracting the semantic information necessary for queries is incredibly expensive. Extracting

object types and positions from the video feeds of a small town using a state-of-the-art

ML method may cost over $1M in cloud compute credits. Second, ML methods can be

unreliable, returning incorrect results, such as missing or hallucinated objects in a video.

1

CHAPTER 1. INTRODUCTION 2

Finally, deploying ML methods is challenging, requiring expertise in programming, statistics,

and computer systems.

In this dissertation, I develop systems, algorithms, and techniques to address the issues

in answering unstructured data queries. In order to allow non-experts to issue unstructured

data queries, I have built systems that allow these application users to specify queries via

standard SQL and extensions. By allowing application users to declaratively specify their

queries in a familiar language, SQL, the systems I have built can then optimize these queries

automatically.

The optimizations I have developed address the high cost of ML-based queries by using

cheap approximations while providing guarantees on query accuracy. These optimizations

can provide one to four orders of magnitude speedups compared to naive methods of answer

queries. To address the reliability of ML methods, I have developed new programming

abstractions to find errors in ML models and the data used to train them. These abstractions

can help developers find errors in ML models with high precision (>80%) and can even

be used to improve the quality of these ML models. My work has been deployed to aid

scientists and autonomous vehicle companies, with real-world improvements of three orders

of magnitude for analytics and 2× cost improvements for finding errors.

In the remainder of this chapter, I discuss the challenges of unstructured analytics and

provide an overview of my contributions towards answering unstructured analytics queries.

1.1 Challenges to Unstructured Data Analytics

1.1.1 The High Cost of Unstructured Data Analytics

The first challenge to answering unstructured queries is its high cost. To understand why

the cost is prohibitive in answering unstructured queries, consider if it were free to execute

ML models. In this scenario, we could simply fully materialize all the semantic information,

e.g., by using Mask R-CNN to extract all object types and positions from every frame in a

video, and use a standard structured database to answer queries.

Unfortunately, this is infeasible for many organizations. To understand the why, I an-

alyzed the cost of answering queries in two scenarios: an urban planner analyzing a small

town’s worth of video (one month of video from 100 street corners) and a social scientist ana-

lyzing how language evolves through Wikipedia text (four billion tokens). For each scenario,

we compute only the cost of materializing the semantic information using a self-hosted ML

CHAPTER 1. INTRODUCTION 3

Urban planning Wikipedia
Structured query $0.042 $0.000026
Self-hosted ML (AWS) $380, 000 $59
ML service (GCP, OpenAI) $18, 000, 000 $300, 000
Human annotation (Scale AI) $630, 000, 000 $320, 000, 000

Table 1.1: Costs of executing queries over unstructured data via self-hosted methods, an
ML service, and using human annotators compared to the cost of executing a structured
query over similar data.

model (AWS EC2), an ML model service (Google Cloud, Open AI), and human annotations

(Scale AI). We also include the cost of a structured query over the same data for reference.

At the time of writing the costs were as follows. The AWS EC2 g4dn.xlarge costs

$0.526 per hour. The Google Cloud Vision API costs $2.25 per 1,000 images. The OpenAI

Davinci model costs $0.08 per 1,000 tokens. Finally, Scale AI labeling costs $0.08 per image

and $0.08 for 100 tokens.

As shown in Table 1.1, the cost of naively executing unstructured queries can be orders of

magnitude more expensive than executing similar structured queries, costing up to millions

of dollars. While the cost difference between the ML services may seem striking (up to

5,000× more expensive), these ML services are widely used. One reason is that many

organizations do not have teams of engineers that can train multi-billion parameter state-of-

the-art models, such as GPT-3 [25]. As a result, they must rely on external services, which

can cost millions of dollars to naively answer unstructured queries.

Thus, the cost of ML models is a major challenge in answering unstructured queries.

1.1.2 The Unreliability of Unstructured Data Analytics

The second challenge to answering unstructured queries is the unreliability of the ML models

often used to answer these queries. An emerging body of work in the ML literature has

shown that even state-of-the-art ML methods are brittle. These ML models can return

highly miscalibrated answers [67], fail to generalize under distribution shift [19], and be

fooled by imperceptible perturbations [63].

This unreliability in ML models can cause catastrophic errors in downstream applica-

tions, both for analytics applications and beyond. For example, errors in ML models have

already caused fatal accidents in autonomous vehicles [171]. Furthermore, any errors in ML

models will be reflected in unstructured data queries that depend on these models.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: A confident error from a state-of-the-art model for detecting birds. The
confidence is in the top 99.9th percentile in the dataset.

To understand how errors can affect unstructured data queries, consider the example

of ecologists searching for hummingbirds in field videos. My collaborators in the Stanford

biology department are interested in finding at least 50% of the hummingbirds in ∼200 days

of collected field videos [32, 126]. The 50% recall target is required for scientific validity when

studying hummingbird feeding patterns. We deployed a state-of-the-art object detection

model (Mask R-CNN [73]) to find birds in this video and labeled the top 1,000 clips of video

(out of ∼8M total). Only 30 of these 1,000 clips contained hummingbirds, a precision of 3%.

Furthermore, the minimum confidence of these 1,000 clips was 98.5%, showing that these

models are highly miscalibrated on real-world data. Simply trusting the model’s confidence

would result in inaccurate queries, as shown in Figure 1.1.

As these results show, ML can be unreliable. Directly deploying ML models would result

in erroneous queries and other negative downstream consequences.

1.1.3 The Programming Difficulty of Unstructured Data Analytics

The third challenge in using ML to answer unstructured data queries is the difficulty in

managing and deploying ML models. Training, managing, and deploying ML models in pro-

duction requires knowledge of programming, deep learning, and data management. Most

CHAPTER 1. INTRODUCTION 5

domain experts in fields outside of computer science (e.g., ecologists, social scientists, busi-

ness analysts) do not have this expertise. Furthermore, even organizations and experts that

do have this expertise must use precious resources towards the management of ML models.

1.2 Efficient and Reliable Unstructured Data Queries

In this dissertation, I construct novel systems and algorithms for efficient and reliable un-

structured data queries. To do so, I develop three key ideas. The first key idea is to allow

application users to express unstructured data queries declaratively in standard SQL, simi-

lar to how structured databases allow users to declaratively express queries over structured

data. Given a query specification, the second key idea is to combine cheap approximations

to expensive ML methods with statistically principled algorithms, which can improve query

costs by orders of magnitude. The third key idea is to design new programming abstractions

to allow domain experts to specify when errors in ML models and the data used to train

them might occur, and automatically mitigate them.

Thesis statement: High-level interfaces for querying unstructured data with ML, com-

bined with automatic optimizations, can deliver high performance and statistical guarantees

on result quality to make unstructured data analytics practical.

In the remainder of this section, I provide an overview of my contributions in the disser-

tation to support the thesis and a summary of the main results.

1.2.1 Efficient ML-based Queries

Unlike in standard queries over structured data, the primary cost in querying unstructured

data is extracting the structured information via expensive ML methods or even human

labelers. We show an example of costs in Table 1.1. Due to the costs of these methods, the

extraction of the structured information must be done at query time. As a result, many

standard query processing techniques cannot be applied and data management with ML

must be rethought.

In the first line of work in this dissertation, I describe my work on generating and using

cheap approximations, called proxy models, to accelerate ML-based queries. Proxy models

are substantially cheaper than expensive ML models, but can be inaccurate, which is not

acceptable in many applications. To rectify this, I have developed algorithms to accelerate

CHAPTER 1. INTRODUCTION 6

general classes of queries: selection, aggregation, and limit queries with statistical guarantees

on query results. I further show how to efficiently generate these approximations.

Selection queries (classification). An important class of queries is selection queries, in

which the user wishes to select records matching a predicate, e.g., frames of a video con-

taining a hummingbird. I explored generating cheap approximations (which I refer to as

proxy scores) in the NoScope system [94]. NoScope trains a proxy model to approximate

whether or not a data record satisfies the target DNN-based predicate. The proxy model is

used to generate a proxy score per data record, which is combined with the target DNN to

answer queries. NoScope can improve approximate selection by orders of magnitude com-

pared to the solution of exhaustive labeling. NoScope has inspired other recent techniques

for ML-based data analytics [11, 30, 124]. Furthermore, I have shown that proxy models

can accelerate general classes of traditional ML workloads [109], e.g., data-transformation

bound workloads.

Selection queries with guarantees. While NoScope and other systems [11, 30, 124] can

accelerate approximate selection queries, they do not provide statistical guarantees on the

recall of the returned set. These guarantees are critical for scientific rigor. For example, my

collaborators in the Stanford biology department wish to find rare events of hummingbirds

feeding in wildlife video. To ensure scientifically valid inferences, they require statistical

guarantees on the recall of the discovered hummingbirds. I am actively working on deploying

SUPG to this application.

To obtain statistical guarantees, I have developed SUPG, query semantics and sampling

algorithms for approximate selection queries with guarantees [95]. My algorithms selec-

tively sample the target DNN and optimize confidence intervals over the samples, which

provides the statistical guarantees. Prior work uses uniform sampling, which I show results

in poor quality results (i.e., returned sets with low precision). To improve the sampling

efficiency, SUPG instead uses a novel set of weights for importance sampling. I show that

my algorithms can improve query quality by up to 30× for a fixed budget.

Aggregation and limit queries with guarantees. I have also developed algorithms

to optimize aggregation (computing a statistic over the data records), aggregation with

predicate (computing a statistic over a subset of the data records that satisfy a condition),

and limit (finding a limited number of records that match a set of predicates) queries [93, 96].

Perhaps surprisingly, I show that these different queries require different algorithms.

CHAPTER 1. INTRODUCTION 7

BlazeIt, which optimizes aggregation and limit queries, reduces variance in sampling

for aggregation queries and ranks rare events for limit queries. In contrast, ABae, which

optimizes aggregation with predicate queries, uses stratified sampling based on proxy models

to avoid sampling records not satisfying the predicates. We show that the convergence of

ABae requires novel analysis of stratified sampling with stochastic draws. Both systems

can improve query execution times by orders of magnitude compared to baselines.

1.2.2 Efficient and High Quality Proxy Score Generation

While the algorithms I have described above can accelerate unstructured data queries, they

require high-quality proxy scores. To generate proxy scores efficiently, I have developed

methods for creating indexes for proxy-based algorithms and efficiently generating them.

Efficient indexes for proxy scores. While proxy scores can accelerate many query

types, they can be inefficient to deploy. A common method of generating proxy scores is

to train a new, cheap model per query to approximate the expensive target DNN [30, 124].

Unfortunately, this method does not share work across queries, requires ad-hoc training

methods, and requires executing the target DNN many times.

To address these issues, I have developed TASTI, an indexing method for constructing

proxy scores for unstructured data via an embedding index [97]. TASTI pre-computes

embeddings that can be used to place records that are close under target DNN outputs

together and annotates a small fraction of the records. To generate scores, TASTI assigns

close records (by embedding distance) to the value of the nearest annotated record. Because

these embeddings are pre-computed and are designed to work for any query over the target

DNN output, they can be reused across queries and query types (including every query

type I described above). I show that TASTI is simultaneously over 10× cheaper at index

construction time and can return query results up to 24× better than ad-hoc proxy models.

Efficiently executing visual analytics [99]. Recent research, e.g., new accelerators, has

greatly improved the throughput of DNNs by up to 150×. While this work has improved the

throughput of DNN execution, it ignores other costs. I show that the preprocessing of visual

data (e.g., image decoding) now bottlenecks end-to-end DNN inference for visual analytics

systems by up to 23×, in the first measurement study of its kind [99]. I have built Smol, a

system that jointly optimizes preprocessing and DNN execution, to address this bottleneck.

Smol can improve throughput by up to 5.9× at a fixed accuracy.

CHAPTER 1. INTRODUCTION 8

(a) Frame 1 (b) Frame 2 (c) Frame 3

Figure 1.2: An object detection model erroneously missing the prediction of the car in
the second frame. Even widely used models (SSD) fail simple checks, such as temporal
consistency.

1.2.3 Monitoring and Quality Assurance

Although my work and others have shown the promise to deploy ML in analytics and beyond,

the widespread deployment of ML is hampered by the lack of reliability in ML models. For

example, errors in ML models can cause fatal accidents in autonomous vehicles.

To begin to address the unreliability of ML methods, I have developed systems and ab-

stractions to monitor ML methods, continuously improve ML models, and improve training

data quality. My work has been deployed at an autonomous vehicle company.

As ML methods continue to improve on benchmark tasks, they are increasingly being

deployed in mission-critical settings, such as autonomous vehicles. However, average-case

measures of performance can hide potentially critical errors. Although software testing has

developed tools for testing critical software, these tools are not directly applicable to ML.

My work has taken steps to bridge these two views. I’ve developed two abstractions,

model assertions [101] and learned observation assertions [92]. Both abstractions are used

to find potential errors in ML model predictions and human labels.

Model assertions allow users to specify specific forms of potential errors. For example,

consider a state-of-the-art object detection DNN deployed over video to detect cars. Even

state-of-the-art models can fail simple assertions, such as temporal consistency, e.g., that a

car should not appear and disappear rapidly in a video (Figure 1.2). As an example of an

assertion, I show the pseudocode for the flickering assertion, which can be written in a few

lines of code:

Boxes are indexed by time and id
def flicker(boxes: Box [][]):

failures = 0
for box1 in boxes [-1]:

CHAPTER 1. INTRODUCTION 9

Figure 1.3: A motorcycle missed by a human annotator in a self-driving car dataset. The
dataset was generated by a leading label vendor, showing that even best-in-class services
can have errors in “gold” labels.

for box3 in boxes [-3]:
if overlaps(box1 , box3) and no_overlap(box1 , boxes [-2]):

failures += 1
return failures

Learned observation assertions (LOA) leverage existing human labels to learn when there

may be discrepancies in ML model predictions or new, possibly erroneous, human labels

(Figure 1.3). Model assertions and LOA can find errors with high true positive rate, at least

75% in all cases we studied.

Furthermore, I showed that assertions can be used in retraining ML models. Organiza-

tions continuously collect data to retrain ML models as they are deployed over new scenarios,

e.g., autonomous vehicles seeing new streets. It is critical to select data that will improve

the model as the majority of data is uninteresting. I showed that model assertions can be

used to select “difficult” data (i.e., data that the model fails on), which improves ML model

quality more than baselines. Assertions can reduce labeling costs by up to 40% at a fixed

budget by finding such data.

My work allows application users to express unstructured data queries via methods they

are already familiar with, SQL. Given queries specified declaratively with SQL, the systems

and algorithms I have built automatically optimize unstructured data queries to be orders

of magnitude more efficient. Furthermore, domain experts can improve the ML models used

in these queries via abstractions until they are satisfied with model quality.

CHAPTER 1. INTRODUCTION 10

1.3 Organization

In this dissertation, I describe the systems, algorithms, and abstractions for efficient and

reliable unstructured data queries. The remainder of this dissertation is organized as follows:

1. In Chapter 2, I present background on example applications, advances in machine

learning, and related work.

2. In Chapter 3, I present NoScope, SUPG, ABae, and BlazeIt, which are proxy-

based algorithms and systems for accelerated ML-based queries. These systems col-

lectively answer selection queries, aggregations, and aggregations with predicates with

both best-effort and exact semantics. They can either improve query runtimes by

orders of magnitude or improve query performance by up to 30× depending on the

setting.

3. In Chapter 4, I present TASTI and Smol, which collectively execute ML-based queries

efficiently. TASTI generates proxy scores efficiently by constructing an index that can

be used across queries. Smol executes proxy-based queries efficiently by generating

query plans that consider preprocessing costs. These systems can deliver up to 24×
improved query runtimes.

4. In Chapter 5, I present model assertions and learned observation assertions, which are

novel abstractions for finding errors in ML models and the data used to train them.

Our prototype systems that implement these, OMG and Fixy, can find errors with

high precision (>80%) that prior work cannot find and improve model quality with

up to 2× fewer labels.

5. In Chapter 6, I conclude with a discussion of trends in ML-based applications and the

results in this dissertation.

The work in this dissertation is adapted from a range of publications (VLDB ’17 [94],

VLDB ’19 [93], VLDB ’20 [95], MLSys ’20 [101], VLDB ’21 [96, 100], SIGMOD ’22 [92, 97]).

My research has inspired a number of extensions in the literature [15, 30, 38, 72, 124].

In addition to academic impact, my work has been deployed in a variety of real-world

applications. My work on query processing has been deployed on ecological data to find

hummingbirds in large-scale video in a cost-effective manner. Furthermore, my work on

finding errors in ML deployments has been deployed at an autonomous vehicle company.

Chapter 2

Background

In this chapter, I provide background for unstructured data queries and discuss related work.

I describe several examples of real-world unstructured data queries in Section 2.1, describe

general trends for ML deployments in Section 2.2, and discuss related work in Section 2.3.

2.1 Example Applications

We begin by describing several example applications that require executing queries over un-

structured data. We describe three examples: an urban planner conducting traffic analysis,

ecologists finding hummingbirds in field videos for ecological analysis, and social scientists

analyzing historical newspaper scans to understand how news affects public opinion.

2.1.1 Traffic Analysis

Suppose an urban planner is interested in conducting traffic analysis. To do so, the urban

planner collects the videos from cameras placed on street corners around the city. After

collecting this video, the urban planner may be interested in a range of queries.

To generally understand the data, the urban planner could issue an aggregation query

that counts the average number of cars per frame of the video. Then, to further understand

traffic patterns, the urban planner may execute a query that computes the average number

of cars per frame of video when there is a red light.

After understanding high-level statistics about the video, the urban planner may be

interested in seeing specific instances of events for further analysis. The urban planner may

issue a query to find instances of five cars and a bus at a stop light to understand congestion.

11

CHAPTER 2. BACKGROUND 12

Processing this video manually is infeasible even for small towns. Even analyzing a month

of video over 100 intersections could cost up to millions of dollars, as shown in Table 1.1.

2.1.2 Ecological Analysis

Our collaborators in the Stanford biology department and Jasper Ridge nature preserve are

studying bird-bacteria microcosms. To do so, they have collected microbial readings from

flowers at a bush and field video of the flowers. The ecologists are interested in matching

hummingbird feeding events (at the flowers) to the microbial readings. To find the feeding

events, the ecologists could issue a query to find at least 90% of the hummingbird frames in

the video. These frames can subsequently be used in their feeding analysis.

The ecologists have collected 200 camera-days of video, which is ∼10TB of data. Un-

fortunately, this data is too much for the team of three scientists to manually analyze.

Furthermore, as they specialize in ecology, they are not well equipped to deploy complex

ML methods over this large scale data.

2.1.3 News Analysis

Our social scientist collaborators at Harvard, Northwestern, and NYU are interested in

understanding how news affects public opinion. To do so, they have collected newspaper

scans from the 1900s to the present. After collecting these scans, the social scientists split the

scans into semantically meaningful regions. For example, images on the page are separated

from section headings and the main text. Finally, the regions are turned into text via optical

character recognition.

After extracting the text, the social scientists are interested in a range of queries. To

understand how major world events affect opinion on science, they may be interested in

issuing a query to compute the average sentiment on science before and after the moon

landing. They may also be interested in retrieving articles discussing the polio vaccine

around its initial release.

These newspaper scans span decades. As a result, there are millions of scans and ter-

abytes of data. Furthermore, the text generated by the scans is in the order of hundreds of

gigabytes and growing as more text is added to the corpus.

CHAPTER 2. BACKGROUND 13

2.2 Deploying ML for Analytics

As described in the examples above, the data volumes for these analyses are too large for

manual analysis. As a result, analysts and scientists are increasingly turning to ML for

automatic analyses.

The trend of using ML for analytics is driven in large part by the increasing capabilities

of ML models. For example, ML models can match human-level performance on supervised

object detection on the MS-COCO dataset [119]. Furthermore, on zero-shot learning tasks,

large language models are now performing markedly better [25].

Unfortunately, as described in Section 1.1, there are three major problems in deploying

ML: difficulty, cost, and reliability.

To understand these challenges, consider the example of finding hummingbirds in eco-

logical field video. In order to find hummingbirds, the ecologists must:

1. Manage ∼10TB of video, which will not fit on a single laptop.

2. Decide which ML model to deploy among the many hundreds of options in the litera-

ture.

3. Write the code to deploy the ML model over large-scale video, including the serving,

work distribution, and logging of results.

4. Collect the results, analyze the accuracy, and determine if the accuracy is high enough.

Doing these steps requires expertise in programming, computer vision, and large-scale data

management. Furthermore, as described in Section 1.1, deploying the ML model can be

costly and return inaccurate results.

Recent progress in ML is driven in large part by larger datasets and model sizes [25]. For

example, language models display sharp improvements in downstream tasks when they are

larger than a critical threshold [175]. Given these trends, we expect ML models to increase

in cost as their capabilities improve.

Given these trends, many analysts and scientists are willing to tolerate approximate an-

swers to queries. Answering approximate queries has a long history in the data community,

known as approximate query processing (AQP). However, as we show, answering approxi-

mate queries over unstructured data requires new techniques, algorithms, and systems.

CHAPTER 2. BACKGROUND 14

2.3 Related Work

We now discuss two areas of related work: approximate query processing for structured data

and retrieval.

2.3.1 Approximate Query Processing

The data analytics community has developed a number of techniques for answering approx-

imate queries over structured data. These approximate query processing (AQP) techniques

broadly fall under two categories: online aggregation and offline synopsis generation [118].

Online aggregation “select[s] samples online and use these samples to answer OLAP queries”

and offline synopsis generation “generate[s] synopses offline based on a-priori knowledge (e.g.,

data statistics or query workload) and use these synopses to answer OLAP queries” [118].

Offline synopsis generation uses pre-computed data structures, ranging from samples

[5, 7], histograms [45, 142, 144], wavelets [66], to sketches [58, 59]. In all of these cases, with

the exception of uniform samples, these methods require that the structured data is already

available at ingest time to compute these synopses. Unfortunately, the structured data is

not available ahead of time for unstructured data. As a result, these techniques cannot be

directly applied to unstructured data queries.

Online aggregation methods aim to generally return progressively more accurate answers

to aggregation queries. These methods typically uniformly sample from the records. Namely,

online aggregation methods use random sampling as additional processing of structured

records is similar to the cost of simply aggregating them, so uniform sampling is the most

efficient. As we show in this dissertation, the cost of materializing structured data from

unstructured data (i.e., running ML models) is so high, this necessitates new methods of

answering approximate queries.

2.3.2 Retrieval

A closely related field is retrieval, in which the goal is to retrieve related records (typically

text or image records) to a target record [65]. Retrieval is typically used in large appli-

cations, including for manual analysis [65], search [52], or question answering [105]. An

emerging body of work in the retrieval community leverages modern ML methods [106].

These methods broadly use powerful deep neural networks to embed the data records and

the target record. They then use similarity of embeddings to do retrieval.

CHAPTER 2. BACKGROUND 15

In general, retrieval techniques do not directly apply to analytical queries. In particular

retrieval techniques do not apply to aggregation queries, selection queries with guarantees on

recall, and other analytical queries. However, several of the emerging techniques in retrieval

are similar in spirit to the techniques described in this dissertation.

Chapter 3

Proxy-based Algorithms and Systems

In this chapter, I describe algorithms and systems that accelerate approximate unstructured

data queries by leveraging proxies. Proxies are cheap approximations to expensive deep

learning models.

As described in Section 2.3, answering approximate queries via AQP techniques has a

long history in the structured data literature. However, unstructured data does not have the

structured records materialized ahead of time. As a result, precomputation is not feasible

for unstructured data. On the other hand, naive random sampling can answer queries but

is not efficient.

To address these issues, I have developed methods of using proxies to “guide” sampling

to answer unstructured data queries more efficiently. In this chapter, we describe a simple

method of generating proxies, but defer a full discussion of efficient generation of proxies

to Chapter 4. In the remainder of this chapter, I describe my algorithms and systems

to leverage these proxies for efficient selection, aggregation, aggregation with predicate, and

limit queries. The algorithms and systems I have developed can provide up to 40× improved

query execution times or query quality (depending on the query type) compared to baselines.

In this chapter, we describe how to leverage these proxies to accelerate a range of queries

including best-effort selection queries (NoScope, Section 3.1), selection queries with guar-

antees on accuracy (SUPG, Section 3.2), aggregation queries with predicates (ABae, Sec-

tion 3.3), aggregation queries, and limit queries (BlazeIt, Section 3.4).

16

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 17

3.1 NoScope

The first system I describe is NoScope, a system for querying videos that can reduce

the cost of selection queries in video by orders of magnitude via inference-optimized model

search. In particular, NoScope supports queries in the form of the presence or absence

of a particular object class. Given a query consisting of a target video, object to detect,

and reference pre-trained neural network (e.g., webcam in Taipei, buses, YOLOv2 [149]),

NoScope automatically searches for and trains a sequence, or cascade [169], of models that

preserves the accuracy of the reference network but are specialized to the target query and

are therefore far less computationally expensive. That is, instead of simply running the

reference NN over the target video, NoScope searches for, learns, and executes a query-

specific pipeline of cheaper models that approximates the reference model to a specified

target accuracy. NoScope’s query-specific pipelines forego the generality of the reference

NN—that is, NoScope’s cascades are only accurate in detecting the target object in the

target video—but in turn execute up to three orders of magnitude faster (i.e., 265-15,500×
real-time) with 1-5% loss in accuracy for binary detection tasks over real-world fixed-angle

webcam and surveillance video. To do so, NoScope leverages both new types of models

and a new optimizer for model search:

First, NoScope uses proxy models that forego the full generality of the reference NN

but faithfully mimic its behavior for the target query. In the context of our example query

of detecting buses, consider the following buses that appeared in a public webcam in Taipei:

To generate these proxy models, NoScope performs model specialization, using the full NN

to generate labeled training data (i.e., examples) and subsequently training smaller NNs

that are tailored to a given video stream and to a smaller class of objects. NoScope then

executes these proxy models, which are up to 340× faster than the full NN, and consults

the full NN only when the proxy models are uncertain (i.e., produce results with confidence

below an automatically learned threshold).

Second, NoScope’s difference detectors highlight temporal differences across frames.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 18

Consider the following frames, which appeared sequentially in our Taipei webcam:

These frames are nearly identical, and all contain the same bus. Therefore, instead of

running the full NN (or a proxy NN) on each frame, NoScope learns a low-cost difference

detector (based on differences of frame content) that determines whether the contents have

changed across frames. NoScope’s difference detectors are fast and accurate—up to 100k

frames per second on the CPU.

A key challenge in combining the above insights and models is that the optimal choice of

cascade is data-dependent. Individual model performance varies across videos, with distinct

trade-offs between speed, selectivity, and accuracy. For example, a difference detector based

on subtraction from the previous frame might work well on mostly static scenes but may

add overhead in a video overseeing a busy highway. Likewise, the complexity (e.g., number

of layers) of proxy NNs required to recognize different object classes varies widely based

on both the target object and video. Even setting the thresholds in the cascade represents

trade-off: should we make a difference detector’s threshold less aggressive to reduce its false

negative rate, or should we make it more aggressive to eliminate more frames early in the

pipeline and avoid calling a more expensive model?

To solve this problem, NoScope performs inference-optimized model search using a

cost-based optimizer that automatically finds a fast model cascade for a given query and

accuracy target. The optimizer applies candidate models to training data, then computes

the optimal thresholds for each combination of models using an efficient linear parameter

sweep through the space of feasible thresholds. The entire search requires time comparable

to labeling the sample data using the reference NN (an unavoidable step in obtaining such

data).

We evaluate a NoScope prototype on binary classification tasks on cameras that are in

a fixed location and at a fixed angle; this includes pedestrian and automotive detection as

found in monitoring and surveillance applications. NoScope demonstrates up to three order

of magnitude speedups over general-purpose state-of-the-art NNs while retaining high—and

configurable—accuracy (within 1-5%) across a range of videos, indicating a promising new

strategy for efficient inference and analysis of video data.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 19

In the remainder of this section, we describe NoScope’s architecture, describe its eval-

uation, and conclude with a discussion on NoScope’s impacts.

3.1.1 NoScope Architecture and Techniques

NoScope Queries and Goal. NoScope targets binary classification queries—i.e.,

presence or absence of a given class of object in a video over time. In NoScope, users

input queries by selecting a target object class (e.g., one of the 9000 classes recognized by

YOLO9000, such as humans, cars, and buses [149]) as well as a target video. Subsequently,

NoScope outputs the time intervals in the video when an object of the specified class was

visible according to a given reference model, or full-scale NN trained to recognize objects in

images. NoScope allows users to specify a target accuracy in the form of false positive and

false negative rates and aims to maximize throughput subject to staying within these rates.1

In summary, given these inputs, NoScope’s goal is to produce the same classification output

as applying the target model on all frames of the video, at a substantially lower computational

cost and while staying within the specified accuracy target.

System Components. NoScope is comprised of three components, as shown in Fig-

ure 3.1: a) proxy models, b) difference detectors, and c) an inference-optimized cost-based

optimizer. When first provided a new video, NoScope applies the reference model to a

subset of the video, generating labeled examples. Using these examples, NoScope searches

for and learns a cascade of cheaper models to accelerate the query on the specific video. No-

Scope subsequently runs the cascade over the remainder of the video, stopping computation

at the cheapest layer of the cascade as soon as it is confident.

NoScope uses two types of models. First, NoScope trains proxy models (Section 3.1.2)

that perform classification tasks. For example, while detecting humans with perfect accuracy

in all frames may require running the full reference model, we show that a much smaller

NN can output a confidence value c that lets us safely label a frame as “no human” if it is

below some threshold clow, label it as “human” if c > chigh, and pass the frame to the full

NN if it is unsure (i.e., clow < c < chigh). Second, NoScope uses difference detectors to

check whether the current frame is similar to a recent frame whose label is known (e.g., for

a camera looking at a hallway, this could be an image where the hallway is empty).
1A false positive is a case where NoScope reports an object but running the reference model would have

reported no object. A false negative is a case where NoScope reports no object but the reference model
would have reported one.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 20

Cascade Architecture Search via Cost-Based Optimization

NoScope: Inference-Optimized Model Search

Difference Detector
100K fps

bus present?

Specialized Model
27K fps

reference
frame

Reference NN
30-60 fps

bus
present?

0s 30s 60s 90s

Query output

Query:

“bus”
+

target video

…

Reference NN 30-60 fps

Query:

“bus”
+

target video

Traditional Deep Neural Network Inference (Frame by Frame)

short-circuit evaluation
! !

! !

Figure 3.1: NoScope is a system for accelerating neural network analysis over videos
via inference-optimized model search. Given an input video, target object, and reference
neural network, NoScope automatically searches for and trains a cascade of models that
can reproduce the binarized outputs of the reference network with high accuracy—but up
to three orders of magnitude faster.

Finally, to automatically search for and configure these models NoScope includes a

cost-based optimizer that learns an efficient configuration of filters for each query to achieve

the target accuracy level (i.e., false positive and false negative rates). We have found (and

empirically demonstrate) that customizing cascades for each video is critical for performance.

We provide an overview of NoScope’s proxy generation technique, but defer the de-

scription of the difference detectors, cost-based optimization, and model search to Kang

et al. [94].

3.1.2 Model Specialization

NoScope uses proxy models to accelerate queries. These are smaller models that faithfully

mimic the behavior of a reference model on a particular task. Generic NNs can classify or

detect thousands of classes, and the generality of these methods naturally leads to costly

inference. Proxy models forego the full generality of a generic, reference model but mimic

its behavior on a subset of tasks the generic model can perform. In query systems such

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 21

as NoScope, we are generally only interested in identifying a small number of objects—as

opposed to the thousands of classes a generic NN can classify—and, in video inference, such

objects may only appear from a small number of angles or configurations.

NoScope performs model specialization by applying a larger, reference model to a target

video and using the output of the larger model to train a smaller, proxy model. Given

sufficient training data from the reference model for a specific video, the proxy model can

be trained to mimic the reference model on the video while requiring fewer computational

resources (e.g., NN layers) compared to the reference model. However, unlike the reference

model, the proxy model learns from examples from the target video and is unlikely to

generalize to other videos or queries. Thus, by sacrificing generalization and performing both

training and inference on a restricted task and input data distribution, we can substantially

reduce inference cost.

Critically, in contrast with related approaches to model compression [70, 79], the goal of

model specialization is not to provide a model that is indistinguishable from the reference

model on all tasks; rather, the goal of model specialization is to provide a model that is

indistinguishable (to a given accuracy target) for a restricted set of tasks. This strategy

allows efficient inference at the expense of generality.

NoScope uses shallow NNs as its specialized models. Shallow NNs are efficient at

inference time and naturally output a confidence in their classification. NoScope uses this

confidence to defer to the reference model when the specialized model is not confident (e.g.,

when no loss in accuracy can be tolerated). NoScope implements proxy models based on

the AlexNet architecture [110] (filter doubling, dropout), using ReLU units for all the hidden

layers and a softmax unit at the end to return a confidence for the class we are querying.

However, to reduce inference time, NoScope’s networks are significantly shallower than

AlexNet.

To train proxy models, NoScope uses standard NN training practices. NoScope uses

a continuous section of video for training and cross-validation and learns NNs using RM-

Sprop [78] for 1-5 epochs, with early stopping if the training loss increases. In addition,

during model search, NoScope uses a separate evaluation set that is not part of the train-

ing and cross-validation sets for each model.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 22

Table 3.1: Video streams and object labels queried in our evaluation.

Video Name Object Resolution FPS # Eval frames Length (hrs)
taipei bus 1000x570 30 1296k 12.0
coral person 1280x720 30 1188k 11.0
amsterdam car 680x420 30 1296k 12.0
night-street car 1000x530 30 918k 8.5
elevator person 640x480 30 592k 5.5
roundabout car 1280x720 25 731k 8.1

3.1.3 Evaluation

We evaluate NoScope on binary classification for real-world webcam and surveillance

videos. In this dissertation, we present end-to-end results and defer a detailed evaluation to

Kang et al. [94]. We show that NoScope can achieve 40× improved throughput compared

to exhaustive execution.

Evaluation Queries and Metrics. We evaluated NoScope on a fixed set of queries

shown in Table 3.1. We use YOLOv2 [149], a state-of-the-art multi-scale NN, as our reference

model. YOLOv2 operates on 416x416 pixel images (resizing larger or smaller images).

YOLOv2 achieves 80 fps on the Tesla P100 GPU installed on our measurement machine.

We obtain videos from seven webcams—five from YouTube Live, and one that we manually

obtained. We split each video into two parts: training and evaluation. Five videos have two

days worth of video, with 8-12 hours of footage per day due to lighting conditions; for these

videos, we use the first day of video for training and the second day for evaluation. For two

videos, we use the first 2.3 hours for training and separate an evaluation set (5-8 hours) by

a minimum of 30 minutes.

We measure throughput by timing the complete end-to-end system excluding the time

taken to decode video frames.

Hardware Environment. We perform our experiments on an NVIDIA DGX-1 server,

using at most one Tesla P100 GPU and 32 Intel Xeon E5-2698 v4 cores during each experi-

ment. The complete system had 80 cores and multiple GPUs, but we limited our testing to

a subset of these so our results would be representative of a less costly server. The system

also had a total of 528 GB of RAM.

End-to-end evaluation. Figure 3.2 illustrates the overall range of performance that

NoScope achieves on our target queries. For each dataset, we obtained the points in the plot

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 23

1x 100x 10
4
x

Speedup

0.8

0.9

1.0
Ac

cu
ra

cy

(a) taipei

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(b) coral

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(c) amsterdam

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(d) night-street

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(e) elevator

1x 100x 10
4
x

Speedup

0.8

0.9

1.0

Ac
cu

ra
cy

(f) roundabout

Figure 3.2: Accuracy vs. speedup achieved by NoScope on each dataset. Accuracy is the
percent of correctly labeled time windows, and speedup is over YOLOv2.

by running NoScope’s CBO with increasing false positive and false negative thresholds (FP∗

and FN∗, with FP∗ = FN∗) and measuring the resulting speedup. NoScope demonstrates

several orders of magnitude speedup across all the datasets, with magnitude depending on

the desired accuracy levels. In all cases, NoScope achieves a 30× speedup with at least

98% accuracy. In many cases, this level of accuracy is retained even at a 100× speedup, and

NoScope can obtain 1000× to 10,000× speedups at 90+% accuracy. The video with the

lowest peak speedup at the 90% accuracy mark is taipei, which shows a busy intersection—

thus, the difference detectors cannot eliminate many frames. However, even in this video,

NoScope can offer an 30× speedup over YOLOv2 with no loss in accuracy.

3.1.4 Discussion

As we have shown, NoScope can accelerate inference over video at scale via inference-

optimized model search. To do so, NoScope uses proxy models trained via model special-

ization and difference detection. By combining these with cost-based optimization and model

search, NoScope can achieve up to orders of magnitude improved throughput compared to

exhaustive evaluation.

As early work published in 2017, NoScope has inspired further work on and using

proxy models, including from groups at MIT, CMU, University of Washington, and MSR

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 24

[16, 30, 72, 124]. Proxy models are now a standard tool of ML-based analytics.

While NoScope accelerates selection queries, it unfortunately does not provide guaran-

tees on query results. Furthermore, it does not accelerate a range of other common queries,

such as aggregation queries. In the following sections, we describe how to leverage proxies to

answer a range of query types with guarantees on accuracy, including selection, aggregation,

and limit queries.

3.2 Approximate Selection with Guarantees

Given the rise of the ability to collect large datasets, practitioners regularly aim to find all

instances of rare events in these datasets. For example, biologists in a lab at Stanford have

collected months of video of a flower field and wish to identify timestamps when humming-

birds are feeding so they can match hummingbird feeding patterns with microbial readings

from the flowers. Furthermore, our contacts at an autonomous vehicle company are inter-

ested in auditing when their labeled data may be wrong, e.g., missing pedestrians [50], so

they can correct them. Importantly, these events are rare (e.g., at most 0.1-1% of frames

contain hummingbirds) and users are interested in the set of matching records as opposed

to aggregate measures (e.g., counts).

Unfortunately, executing oracle predicates (e.g., human labelers or deep neural networks)

to find such events can be prohibitively expensive, so many applications have a budget on

executing oracle predicates. For example, biologists can watch only so many hours of video

and companies have fixed labeling budgets.

NoScope can accelerate selection queries by leveraging proxy models. These proxy

models are typically small ML models that provide a confidence score for the label and

selection predicate. If the proxy model’s confidence scores are reliable and consistent with

the oracle, they can be used to filter out the vast majority of data unlikely to match.

There are two major challenges in using these proxy models to reduce the labeling cost

subject to a budget: reliability of proxy models and oracle labeling efficiency.

First, given the budget, using an unreliable proxy model can result in false nega-

tives or positives, making it difficult to guarantee the accuracy of query results. Ex-

isting systems do not provide guarantees on the accuracy. In fact they can fail unpre-

dictably and catastrophically, providing results with low accuracy a significant fraction of

the time [11, 30, 83, 93, 94, 124]. For example, when users request a precision of at least

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 25

20 40 60 80 100
Precision

Naive

SUPGM
et

ho
d

ImageNet

Figure 3.3: Box plot of achieved precisions of naive sampling from recent work [94, 124]
and our improved algorithm. The naive algorithm returns precisions as low as 65% for over
half the runs. In contrast, our algorithms (SUPG) achieve the precision target w.h.p.

90%, over repeated runs, existing systems return results with less than 65% precision over

half the time, with some runs low as 20% (Figure 3.3). These failures can be even worse

in the face of shifting data distributions, i.e., model drift (Section 3.2.5). Such failures are

unacceptable in production deployment and for scientific inference.

Second, existing systems do not make efficient use of limited oracle labels to maximize

the quality of query results. To avoid vacuous results (e.g., achieving a perfect recall by

returning the whole dataset will have poor precision), NoScope, probabilistic predicates,

and other work uniformly sample records to label with the oracle in order to decide on the

final set of records to return. We show that this is wasteful. In the common case where

records matching the predicate are rare, the vast majority of uniformly sampled records

will be negatives. Thus, naively extending existing techniques yields results with accuracy

guarantees can fail to maintain high result quality given these uninformative labels.

In response we develop novel algorithms that provide both statistical guarantees and

efficient use of oracle labels for approximate selection. We further develop query semantics

for the two settings we consider: the recall target and precision target settings.

Accuracy guarantees. To address the challenge of guarantees on failure probability,

we first define probabilistic guarantees for two classes of approximate selection queries. We

have found that users are interested in queries targeting a minimum recall (RT queries)

or targeting a minimum precision (PT queries), subject to an oracle label budget and a

failure probability on the query returning an invalid result (Section 3.2.2). For instances,

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 26

the biologist are interested in 90% recall and a failure probability of at most 5%.

We develop novel algorithms (SUPG algorithms) that provide these guarantees by using

the oracle budget to sample records to label, and estimating a proxy confidence threshold

τ for which it is safe to return all records with proxy score above τ . Naive use of uniform

sampling will not account for the probability that there is a deviation between observed labels

and proxy scores, and will further introduce multiple hypothesis testing issues. This will

result in a high probability of failure. In response, we make careful use of confidence intervals

and multiple hypotheses corrections to ensure that the failure probability is controlled.

Oracle sample efficiency. A key challenge is deciding which data points to label with the

oracle given the limited budget: as we show, uniform sampling is inefficient. Instead, we de-

velop novel, optimal importance sampling estimators that use of the correlation between the

proxy and the oracle, while taking into account mismatches between the binary oracle and

continuous proxy. Intuitively, importance sampling upweights the probability of sampling

data points with high proxy scores, which are more likely to contain events of interest.

However, naive use of importance sampling results in poor performance when sampling

according to proxy scores. Using a variance decomposition, we find that a standard approach

for obtaining importance weights (i.e., using weights proportional to the proxy) is suboptimal

and, excluding edge cases, performs no better than uniform random sampling.

Instead, we show that sampling proportional to the square root of the proxy scores allows

for more efficient estimates of the proxy threshold when the proxy scores are confident and

reliable (Section 3.2.4). For precision target queries, we additionally extend importance

sampling to use a two-stage sampling procedure. In the first stage, our algorithm estimates

a safe interval to further sample. In the second stage, our algorithm samples directly from

this range, which we show greatly improves sample efficiency.

Careless of use of importance sampling can hurt result quality when used with poor proxy

models. If proxy scores are uncorrelated with the true labels, importance sampling will in

fact increase the variance of sampling. To address these issues, we defensively incorporate

uniform samples to guard against situations where the proxy may be adversarial [137]. This

procedure still maintains the probabilistic accuracy guarantees.

We implement and evaluate these algorithms on real and synthetic datasets. Our algo-

rithms achieve desired accuracy guarantees, even in the presence of model drift. We further

show that our algorithms outperform alternative methods in providing higher result quality,

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 27

(a) Hummingbird present (b) No hummingbirds

Figure 3.4: Sample matching (a) and non-matching (b) frames for a selection query over
a video stream used by our biologist collaborators. DNNs can serve as proxies to identify
hummingbirds as shown in (a), but the confidence scores can be unreliable.

by as much as 30× higher recall/precision under precision/recall constraints respectively.

In the remainder of this section, we describe use cases for SUPG, its algorithmic proce-

dure in detail, and our evaluation of SUPG.

3.2.1 Use Cases

To provide additional context and motivation for approximate selection queries, we describe

scenarios where statistically efficient queries with guarantees are essential. Each scenario is

informed by discussions with academic and industry collaborations.

Biological Discovery

Scenario. We are actively collaborating with the Fukami lab at Stanford University, who

study bacterial colonies in flowers [154]. The Fukami lab is interested in hummingbirds

that move bacteria between flowers as they feed, as this bacterial movement can affect both

the micro-ecology of the flowers and later hummingbird feeding patterns. To study such

phenomena, they have collected videos of bushes with tagged flowers at the Jasper Ridge

biological preserve. They have recorded six views of the scene with a total of approximately

9 months of video. At 60 fps, this is approximately 1.4B frames of video. To perform

downstream analyses, our collaborators want to select all frames in the video that contain

hummingbirds. Due to the rarity of hummingbird appearances (< 0.1%) and the length of

the video, they have been unable to manually review the video in its entirety. We illustrate

the challenge in Figure 3.4.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 28

Proxy model. Prior to our collaboration, the Fukami lab used motion detectors as a proxy

for identifying frames with birds. However, the motion detectors have severe limitations:

their precision is extremely low (approximately 2%) and they do not cover the full field of

view of the bush. As an alternative, we are actively using DNN object detector models to

identify hummingbirds directly from frames of the video [18, 73]. These DNN models are

more precise than motion detectors, and can provide a confidence score in addition to a

Boolean predicate result.

During discussion with the Fukami lab, we have found that the scientists require high

probability guarantees on recall, as finding the majority of hummingbirds is critical for

downstream analysis. Furthermore, they are interested in improving precision relative to

the motion detectors. The scientists have specified that they need a recall of at least 90%

and a precision that is as high as possible, ideally above 20%.

Autonomous Vehicle Training

Scenario. An autonomous vehicle company may collect data in a new area. To train the

DNNs used in the vehicle, the company may extract point cloud or visual data and use a

labeling service to label pedestrians. Unfortunately, labeling services are known to be noisy

and may not label pedestrians even when they are visible [50].

To ensure that all pedestrians are labeled, an analyst may wish to select all frames where

pedestrians are present but are not annotated in the labeled data. However, as autonomous

vehicle fleets collect enormous amounts of data (petabytes per day), the analyst is not able

to manually inspect all the data.

Proxy model. As the proxy model, the analyst can use an object detection method and

remove boxes that are in the labeled dataset. The analyst can then use the confidences from

the remaining boxes from the object detection as the proxy scores.

As this is a mission-critical setting, the analyst is interested in guarantees on recall.

Missing pedestrians in the labeled dataset can transfer to missing pedestrians at deployment

time, which can cause fatal accidents. The analyst may also be interested in using other

proxies, such as 3D detections from LIDAR data. In this work, we only study the use of

a single proxy model, but we see extending our algorithms to multiple proxy models as an

exciting area of future work.

This scenario is not limited to autonomous vehicles but can apply to other scenarios

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 29

SELECT * FROM table_name
WHERE filter_predicate
ORACLE LIMIT o
USING proxy_estimates
[RECALL | PRECISION] TARGET t
WITH PROBABILITY p

Figure 3.5: Syntax for specifying approximate selection queries.

where curating high quality machine learning datasets is of paramount concern.

3.2.2 Approximate Selection Queries

We introduce our definitions for our approximate selection queries (SUPG queries), describe

the probabilistic guarantees they respect, and define metrics for comparing result quality.

Query Semantics

A SUPG query is a selection query for set of records matching a predicate, with syntax

given in Figure 3.5. Unlike much of the existing work in approximate query processing,

SUPG queries return a set of matching records rather than a scalar or vector aggregate

[7, 75]. We defined these semantics to formalize a common class of queries our collaborators

and industrial contacts are interested in executing.

The query specifies a filter predicate given by a “ground truth” oracle, as well as a

limited budget of total calls to the oracle over the course of query execution. We use the

term oracle to refer to any expensive predicate the user wishes to approximate. In some

cases, the oracle may be an expensive DNN (e.g., the highly accurate Mask R-CNN [73])

that may not exactly match the ground truth labels that a human labeler would provide.

However, the use of proxies to approximate powerful deep learning models is common in the

literature [11, 83, 93, 94, 124], so we study how to provide guarantees in applications that

use a larger DNN as an oracle.

Since oracle usage is limited, queries also specify proxy confidence scores for whether

a record matches the predicate. The proxy scores must be correlated with the probability

that a record matches the filter predicate to be useful. Nonetheless, our novel algorithms

will return valid results even if proxy scores are not correlated.

The accuracy of the set of results can be measured using either recall (the fraction of

true matches returned) or precision (the fraction of returned results that are true matches).

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 30

Based on the application, a user can specify either a minimum recall or precision target

as well as a desired probability of achieving this target. We refer to these two options as

precision target (PT) and recall target (RT) queries. As an example, consider the following

RT query:

SELECT * FROM hummingbird_video
WHERE HUMMINGBIRD_PRESENT(frame) = True
ORACLE LIMIT 10,000
USING DNN_CLASSIFIER(frame) = "hummingbird"
RECALL TARGET 95%
WITH PROBABILITY 95%

where both HUMMINGBIRD_PRESENT and DNN_CLASSIFIER are user-defined functions (UDFs).

This query selects the frames of the video that contains a hummingbird with recall at least

95%, using at most 10,000 oracle evaluations, and a failure probability of at most 5%, using

confidence probabilities from a DNN classifier as a proxy. The oracle could be a human

labeler or expensive DNN.

Finally, we note that some queries may require both a recall and precision target. Unfor-

tunately, jointly achieving both targets may require an unbounded number of oracle queries.

Since all use cases we consider have limited budgets, we defer our discussion of these queries

to an extended version of this chapter [95].

Probabilistic Guarantees

More formally, a SUPG query Q is defined by an oracle predicate O(x) ∈ {0, 1} over a set

of records x from a dataset D. The ideal result for the query would be the matching records

O+ := {x ∈ D : O(x) = 1}. However, since the oracle is assumed to be expensive, the query

specifies a budget of s calls to the oracle O(x), as well as a proxy model A(x) ∈ [0, 1] whose

use is unrestricted. The query specifies a minimum recall or precision target γ. Then, a valid

query result would be a set of records R such that Precision(R) > γp or Recall(R) > γr

depending on the query type. Recall that

Precision(R) :=
|R ∩O+|
|R|

Recall(R) :=
|R ∩O+|
|O+|

.

A SUPG query further specifies a failure probability δ. Many precision or recall targets γ

may be impossible to achieve deterministically given a limited budget of s calls to the oracle,

as they require exhaustive search. Thus, it is common in approximate query processing and

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 31

statistical inference to use randomized procedures with a bounded failure probability [44].

A randomized algorithm satisfies the guarantees in Q if it produces valid results R with

high probability. That is, for PT queries:

Pr[Precision(R) ≥ γp] ≥ 1− δ (3.1)

and for RT queries:

Pr[Recall(R) ≥ γr] ≥ 1− δ. (3.2)

These high probability guarantees are much stronger than merely achieving an average

recall or precision as many existing systems do [11, 83, 94, 124]. For example, in Figure 3.8

we illustrate the true recall provided for queries targeting 90% recall to NoScope system,

and compare them with the recall provided by SUPG which satisfies the stronger guarantee

in Equation 3.2. NoScope only achieves the target recall approximately half of the time,

with many runs failing to achieve the recall target by a significant margin. Such results that

fail to achieve the recall target would have a significant negative impact on downstream

statistical analyses.

Result Quality

Since SUPG queries only specify a target for either precision or recall (the target metric),

there are many valid results for a given query which may be more or less useful. For instance,

if a user targets 99% recall the entire dataset is always a valid result, even though this may

not be useful to the user. In this case, it would be more useful to return a smaller set of

records to minimize false positives. Similarly, if a user targets high precision the empty set

is always a valid result, and is equally useless. Thus, we define selection query quality in

this chapter as follows:

Definition 1. For RT/PT queries, a higher quality result is one with higher precision/recall,

respectively.

There is an inherent trade-off between returning valid results and maximizing result

quality, analogous to the trade-off between maximizing precision and maximizing recall in

binary classification [28, 64], but efficient use of oracle labels will allow us to develop more

efficient importance sampling based query techniques.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 32

Data
Records

Oracle
(naive)

Proxy
Scores

x ?
0.30

0.94

0.92

0.12

…

…

0.75

Selected by Naive,
66% recall

Selected by SUP,
>95% recall

Oracle
(SUPG)

x

?

?
x

0.71
?

x

Figure 3.6: SUPG algorithms use sampled oracle labels and proxy scores to identify
a subset of records that satisfy a recall or precision target with high probability. Naive
methods use limited oracle samples less efficiently and can fail to achieve the target recall
or precision.

3.2.3 Algorithm Overview

In this section, we describe the system setting that our SUPG algorithms operate in, and

outline the major stages in the algorithm: sampling oracle labels, choosing a proxy threshold,

and returning a set of data record results.

Operational Architecture

Our algorithms are designed for batch query systems that perform selection on datasets

of existing records. Users can issue queries over the data with specified predicates and

parameters as described earlier. Note that the oracle and proxy models used to evaluate the

filter predicate are provided by the user as UDFs (callback functions) and are not inferred

by the system. Thus, a user must provide either a ground truth DNN or interface to obtain

human input as an oracle, as well as pre-trained inexpensive proxy models. In practice, one

can provide user interfaces for interactively requesting human labels [4] as well as scripts for

automatically constructing smaller proxy models from an existing oracle [94, 124], though

those are outside the scope of this chapter.

We illustrate how SUPG uses oracle and proxy models in Figure 3.6. For all query types,

SUPG first executes the proxy model over the complete set of records D as we assume the

proxy model is cheap relative to the oracle model. Then, SUPG samples a set S of s records

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 33

to label using the oracle model. The choice of which records to label using the oracle is done

adaptively, that is, the choice of samples may depend on the results of previous oracle calls

for a given query.

Algorithm 1 SUPG query processing
function SUPGQuery(D, A, O)
S ← SampleOracle(D)
τ ← EstimateTau(S)
R1 ← {x : x ∈ S ∧O(x) = 1}
R2 ← {x : x ∈ D ∧A(x) ≥ τ}
return R1 ∪R2

We summarize this sequence of operations SUPG uses to return query results in Algo-

rithm 1. After calling the oracle to obtain predicate labels over a sample S, SUPG sets a

proxy score threshold τ and then returns results R that consist of both labeled records in

S matching the oracle predicate as well as records with proxy scores above the threshold τ .

τ is tuned so that the final results R satisfy minimum recall or precision targets with high

probability, and we describe the process for setting τ below.

Choosing a Proxy Threshold

Since the proxy scores are the only source of information on the query predicate besides the

oracle model, SUPG naturally returns records corresponding to all records with scores above

a threshold τ . This strategy is known to be optimal in the context of retrieval and ranking

as long as proxy scores grow monotonically with an underlying probability that the record

matches a predicate [125]. We have observed in practice that this is approximately true for

proxy models by computing empirical match rates for bucketed ranges of the proxy scores,

so we use this as the default strategy in SUPG. For proxy models that are completely un-

correlated or have non-monotonic relationships with the oracle, all algorithms using proxies

will have increasingly poor quality, but SUPG will still provide accuracy guarantees.

Thus, the key task is selecting the threshold τ to maintain result validity while maxi-

mizing result quality. This threshold must be set at query time since the relation between

proxy scores and the predicate is unknown, especially when production model drift is an

issue. Existing systems have often relied on pre-set thresholds determined ahead of time,

which we show in Section 3.2.5 can lead to severe violations of result validity.

One naive strategy for selecting τ at query time is to uniform randomly sample records

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 34

Table 3.2: Notation Summary

Symbol Description
O(x) Oracle predicate value
A(x) Proxy confidence score
δ Failure probability
γ Target Recall / Precision
τ Proxy score threshold for selection
S Records sampled for oracle evaluation

to label with the oracle until the budget is exhausted, and then select τ that achieves a

target accuracy over the sample. However, this strategy on its own does not provide strong

accuracy guarantees or make efficient use of the sample budget. Thus, in Section 3.2.4 we

introduce more sophisticated methods for sampling records and estimating the threshold:

that is, implementations of SampleOracle and EstimateTau.

3.2.4 Estimating proxy thresholds

Recall that SUPG selects all records with proxy scores above a threshold τ . Denote this set

of records

D(τ) := {x : A(x) ≥ τ}.

SUPG query accuracy thus critically depends on the choice of τ . In this section we describe

our algorithms for estimating a threshold that can guarantee valid results with high proba-

bility, while maximizing result quality. While precision target (PT) and recall target (RT)

queries require slightly different threshold estimation routines, in both cases SUPG samples

records to label with the oracle. Using this sample, SUPG will select a threshold τ that

achieves the target metric on the dataset D with high probability.

In order to explain our algorithms and compare them with existing work, we will also

describe a number of baseline techniques which do not provide statistical guarantees, and

do not make efficient use of oracle labels to improve result quality.

We now describe baselines without guarantees, how to correct these baselines for statisti-

cal guarantees on failure probability, and finally our novel importance sampling algorithms.

Baselines Without Guarantees

The simplest strategy for estimating a valid threshold would be to take a uniform i.i.d. ran-

dom sample of records S, label the records with the oracle, and then use S as an exact

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 35

representative of the dataset D when choosing a threshold. This is the approach used by

probabilistic predicates and NoScope [94, 124], and we call this approach U-NoCI because

it uses a uniform sample and does not account for failure probabilities using confidence in-

tervals (CI). Let RecallS(τ) and PrecisionS(τ) denote the empirical recall and precision for

the sampled data S, and 1c denote the indicator function that condition c holds:

RecallS(τ) :=

∑
x∈S 1A(x)≥τO(x)∑

x∈S O(x)
(3.3)

PrecisionS(τ) :=

∑
x∈S 1A(x)≥τO(x)

|S|
. (3.4)

The U-NoCI-P approach maximizes result quality subject to constraints on these em-

pirical recall and precision estimates. For PT queries this results in finding the minimal τ

(minimizing false negatives) that achieves the target metric on S, and for RT queries this

results in finding the maximum τ (minimizing false positives). Formally this is defined as,

τU-NoCI-P(S) = min{τ : PrecisionS(τ) ≥ γ} (3.5)

τU-NoCI-R(S) = max{τ : RecallS(τ) ≥ γ}. (3.6)

However, we have no guarantee that the thresholds selected in this way will provide valid

results on the complete dataset, due to the random variance in choosing a threshold based

on the limited sample. We empirically show that such algorithms fail to achieve targets up

to 80% of the time in Section 3.2.5.

Guarantees through Confidence Intervals

In order to provide probabilistic guarantees, we form confidence intervals over τ and take

the appropriate upper or lower bound.

Normal approximation. In Lemma 1 we describe an asymptotic bound relating sample

averages to population averages, allowing us to bound the discrepancy between recall and

precision achieved on S vs D. This approximation is commonly used in the approximate

query processing literature [6, 68, 75].

For ease of notation we will refer to the upper and lower bounds provided by Lemma 1

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 36

using helper functions

UB(µ, σ, s, δ) := µ+
σ√
s

√
2 log

1

δ
(3.7)

LB(µ, σ, s, δ) := µ− σ√
s

√
2 log

1

δ
. (3.8)

Lemma 1. Let S be a set of s i.i.d. random variables x ∼ X with mean µ and finite variance

σ2 and sample mean µ̂. Then,

lim
s→∞

Pr [µ̂ ≥ UB(µ, σ, s, δ)] ≤ δ

and

lim
s→∞

Pr [µ̂ ≤ LB(µ, σ, s, δ)] ≤ δ.

Lemma 1 defines the expected variation in recall and precision estimates as s grows large,

and follows from the Central Limit Theorem [174]. Using this, we can select conservative

thresholds that with high probability still provide valid results on the underlying dataset

D. Though this bound is an asymptotic result for large s, quantitative convergence rates

for such statistics are known to be fast [20] and we found that this approach provides the

appropriate probabilistic guarantees at sample sizes s > 100.

We will now describe baseline uniform sampling based methods for estimating τ in both

RT and PT queries.

Recall Target. For recall target queries, we want to estimate a threshold τ such that

RecallD(τ) ≥ γ with probability at least 1− δ. To maximize result quality we would further

like to make τ as large as possible. We present the pseudocode for a threshold selection

routine U-CI-R that provides guarantees on recall in Algorithm 2.

Note that Algorithm 2 finds a cutoff τ that achieves a conservative recall of γ′ on S
instead of the target recall γ. This inflated recall target accounts for the potential random

variation from forming the threshold on S rather than D.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 37

Validity justification. Let τo be the largest threshold providing valid recall on D:

τo := max{τ : RecallD(τ) ≥ γ}

If RecallS(τo) ≤ γ′ then Algorithm 1 will select a threshold τ ′ where τ ′ ≤ τo since recall

varies inversely with the threshold. Then, RecallD(τ ′) ≥ RecallD(τ) ≥ γ and the results

derived from τ ′ would be valid.

It remains to show that with probability 1− δ, γ′ satisfies:

RecallS(τo) ≤ γ′. (3.9)

Let Z1(τ), Z2(τ) be sample indicator random variables for matching records above and

below τo, corresponding to the samples in S.

Z1(τ) := {1A(x)≥τO(x) : x ∈ S}

Z2(τ) := {1A(x)<τO(x) : x ∈ S}.

Note that
µ̂Z1(τ)

µ̂Z1(τ)
+µ̂Z2(τ)

= RecallS(τ), which increases with µ̂Z1(τ) and decreases with µ̂Z2(τ).

Thus, if we let

γ∗ =
UB(µZ1(τo), σZ1(τo), s,

δ
2)

UB(µZ1(τo), σZ1(τo), s,
δ
2) + LB(µZ2(τo), σZ2(τo), s,

δ
2)

then asymptotically as s → ∞ Lemma 1 ensures RecallS(τo) =
µ̂Z1(τo)

µ̂Z1(τo)
+µ̂Z2(τo)

≤ γ∗ with

probability 1− δ. γ∗ is not computable from our sample so we use plug-in estimates for τo,

µ, and σ to estimate a γ′ → γ∗ as s→∞.

Precision Target. For precision target queries, we want to estimate a threshold τ such

that PrecisionD(τ) ≥ γ with high probability. To maximize result quality (i.e., maximize

recall), we would further like to make τ as small as possible.

Unlike for recall target queries, there is no monotonic relationship between PrecisionD(τ)

and τ : PrecisionD(τ1) may be greater than PrecisionD(τ2) even if τ1 < τ2. Thus, for PT

queries we calculate lower bounds on the precision provided by a large set of candidate

thresholds τ , and return the smallest candidate threshold that provides results with precision

above the target.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 38

Algorithm 2 Uniform threshold estimation (RT)
function τU-CI-R(D)
S ← UniformSample(D, s)
τ̂o ← max{τ : RecallS(τ) ≥ γ}
Z1 ← {1A(x)≥τ̂oO(x) : x ∈ S}
Z2 ← {1A(x)<τ̂oO(x) : x ∈ S}
γ′ ← UB(µ̂z1 ,σ̂z1 ,s,δ/2)

UB(µ̂z1 ,σ̂z1 ,s,δ/2)+LB(µ̂z2 ,σ̂z2 ,s,δ/2)

τ ′ ← max{τ : RecallS(τ) ≥ γ′}
return τ ′

Algorithm 3 Uniform threshold estimation (PT)
m← 100 . Minimum step size
function τU−CI−P(D)
S ← UniformSample(D, s)
AS ← Sort({A(x) : x ∈ S})
M ← ds/me
Candidates← {}
for i← m, 2m, . . . , s do

τ ← AS [i]
Z ← {O(x) : x ∈ S ∧A(x) ≥ τ}
pl ← LB(µ̂Z , σ̂Z , |Z|, δ/M) . Precision Bound
if pl > γ then

Candidates← Candidates ∪ {τ}
return minτ Candidates

We provide pseudocode for U-CI-R which uses confidence intervals over a uniform sample

(Algorithm 3). Since the procedure uses Lemma 1 M times by union bound we need each

usage to hold with probability 1 − δ/M for the final returned threshold to be valid with

probability 1− δ.

Validity justification. Let

Z(τ) = {O(x) : x ∈ S ∧A(x) ≥ τ},

then µ̂Z(τ) = PrecisionS(τ) and µZ(τ) = PrecisionD(τ). Asymptotically by Lemma 1, with

probability 1− δ/M
LB(µ̂Z(τ), σZ(τ), |Z(τ)|, δ/M) ≤ µZ(τ).

By the union bound, as long as each τ in the Candidate set has LB(µ̂Z(τ), σZ(τ), |Z(τ)|, δ/M) >

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 39

γ, the precision for each of the candidates over the dataset also exceeds γ. Since we do not

know σ, in Algorithm 3 we use sample plug-in estimates for σZ(τ). Alternatively one could

use a t-test (both are asymptotically valid).

Importance Sampling

The U-CI routines for estimating τ in Algorithms 2 and 3 provide valid results with prob-

ability 1 − δ. However if the random sample chosen for oracle labeling S is uninformative,

the confidence bounds we use will be wide and the threshold estimation routines will return

results that have lower quality in order to provide valid results. Thus, we explain how SUPG

uses importance sampling to select a set of points that improve upon uniform sampling. We

refer to these more efficient routines as IS-CI estimators.

Importance sampling chooses records x with replacement from the dataset D with

weighted probabilities w(x) as opposed to uniformly with base probability u(x). One can

compute the expected value of a quantity f(x) with reduced variance by then sampling

according to w rather than u and using the reweighting identity:

E
x∼u

[f(x)] = E
x∼w

[
f(x)

u(x)

w(x)

]
. (3.10)

Abbreviating the reweighting factor asm(x) := u(x)/w(x), we can then define reweighted

estimates for recall and precision on a weighted sample Sw:

RecallSw(τ) :=

∑
x∈S 1A(x)≥τO(x)m(x)∑

x∈Sw O(x)m(x)
(3.11)

PrecisionSw(τ) :=

∑
x∈S 1A(x)≥τO(x)m(x)∑

x∈Sw m(x)
(3.12)

If we can reduce the variance of these estimates, we can use the tighter bounds to improve

the quality of the results at a given recall or precision target.

The optimal choice of w(x) for the standard importance sampling setting is w(x) ∝
f(x)u(x) [174]. However, this assumes f(x) is a known function. In our setting, we want

f(x) = 1A(x)≥τO(x) which is both stochastic and a priori unknown. This prevents us from

directly applying traditional importance sampling weights based on f(x). Instead, we can

use the proxy A(x) to define sampling weights.

Our approach solves for the optimal sample weights for proxies that are highly correlated

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 40

Algorithm 4 Importance threshold estimation (RT)
function τIS-CI-R(D)

~w ← {
√
A(x) : x ∈ D}

~w ← .9 · ~w/‖~w‖1 + .1 ·~1/|D| . Defensive Mixing
S ←WeightedSample(D, ~w, s)
m(x)← 1/|D|

w(x)

τo ← max{τ : RecallSw(τ) ≥ γ}
ẑ1 ← {1A(x)≥τoO(x)m(x) : x ∈ S}
ẑ2 ← {1A(x)<τoO(x)m(x) : x ∈ S}
γ′ ← UB(µ̂z1 ,σ̂z1 ,s,δ/2)

UB(µ̂z1 ,σ̂z1 ,s,δ/2)+LB(µ̂z2 ,σ̂z2 ,s,δ/2)

τ ′ ← max{τ : RecallSw(τ) ≥ γ′}
return τ ′

with the oracle, i.e. calibrated with A(x) = Prx∼u[O(x) = 1|A(x)]. In practice this will

not hold exactly, but as long as the proxy scores are approximately proportional to the

probability we can use them to derive useful sample weights. We show in Section 3.2.4 that

the optimal weights which minimize the variance are proportional to
√
A(x)1A(x)≥τu(x). To

guard against situations where the proxy could be inaccurate, we defensively mix a uniform

distribution with these optimal weights in our algorithms [137].

Note that the validity of our results does not depend on the proxy being calibrated, but

this importance sampling scheme allows us to obtain lower variance threshold estimates and

thus more efficient query results when the proxy is close to calibrated.

Recall target. For recall target queries, we extend Algorithm 2 to use weighted samples

according to Theorem 1. We use the weights to optimize the variance of E[O(x)] as a proxy

for reducing the variance of E[1A(x)≥τoO(x)] and E[1A(x)<τoO(x)]. We present this weighted

method, IS-CI-R, in Algorithm 4. The justification for high probability validity is the same

as before.

Precision target. For PT queries we can combine Theorem 1 with an additional observation:

if we know there are at most nmatch positive matching records in D, then there is no need

to consider thresholds lower than the nmatch/γ-th highest proxy score in D, since any lower

thresholds cannot achieve a precision of γ. SUPG thus devotes half of the oracle sample

budget to estimating the upper bound nmatch and the remaining half for running a weighted

version of Algorithm 3 on candidate thresholds. We present this two-stage weighted sampling

algorithm, IS-CI-P, in Algorithm 5.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 41

Algorithm 5 Importance threshold estimation (PT)
m← 100 . Minimum step size
function τIS-CI-P(D)

~w ← {
√
A(x) : x ∈ D}

~w ← .9 · ~w/‖~w‖1 + .1 ·~1/|D| . Defensive Mixing
S0 ←WeightedSample(D, w, s/2) . Stage 1
m(x)← 1/|D|

w(x)

Z ← {O(x)m(x) : x ∈ S0}
nmatch ← |D| ·UB(µ̂Z , σ̂Z , s/2, δ/2)
A← SortDescending({A(x) : x ∈ D})
D′ ← {x : A(x) ≥ A[nmatch/γ]}
S1 ←WeightedSample(D′, w, s/2) . Stage 2
AS1 = A ∩ S1
M ← ds/me
Candidates← {}
for i← m, 2m, . . . , s do

τ ← AS1 [i]
Z ← {O(x) : x ∈ S1 ∧A(x) ≥ τ}
pl ← LB(µ̂Z , σ̂Z , |Z|, δ/(2M)) . Precision Bound
if pl > γ then

Candidates← Candidates ∪ {τ}
return minτ Candidates

We set the failure probability of each stage to δ/2 which guarantees the overall fail-

ure probability of the algorithm via the union bound. The remaining arguments for high

probability validity follows the argument for the unweighted algorithm.

Statistical Efficiency.

Algorithm. Theorem 1 formally states the optimal sampling weights used by our impor-

tance sampling τ estimation routines. We defer the proof to Kang et al. [95].

Theorem 1. For an importance sampling routine estimating Ex∼u[f(x)], when f(x) =

{0, 1}, a(x) is a calibrated proxy Prx∼u[f(x) = 1|a(x)] = a(x), and we sample knowing

a(x), u(x), but not f(x), then importance sampling with w(x) ∝
√
a(x)u(x) minimizes the

variance of the reweighted estimator.

We apply can this to our algorithms using f(x) = O(x)·1A(x)≥τ and a(x) = A(x)·1A(x)≥τ .
To illustrate the impact of these weights, we can quantify the maximum improvement in

variance they provide. Compared with uniform sampling or sampling proportional to a(x),

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 42

these weights provide a variance reduction of at least ∆v = Varx∼u[
√
a(x)], which is signifi-

cant when the proxy confidences are concentrated near 0 and 1, while the differences vanish

when there is little variation in the proxy scores.

Intuition. In standard importance sampling, the variance minimizing weights are propor-

tional to the function values. However, in our setting, we only have access to probabilities

(i.e., A(x)) for the function we wish to compute expectations over (i.e., O(x)). Since O(x)

is a randomized realization of A(x), up-weighing x proportionally to A(x) results in “over-

confident” sampling. Thus, the square root weights effectively down-weights the confidence

that A(x) accurately reflects O(x).

Table 3.3: Summary of datasets, oracle models, proxy models, and true positive rates.

Dataset Oracle Proxy TPR Task description
ImageNet Human labels ResNet-50 0.1% Finding hummingbirds in the ImageNet

validation set
night-street Mask R-CNN ResNet-50 4% Finding cars in the night-street video
OntoNotes Human labels LSTM 2.5% Finding city relationships
TACRED Human labels SpanBERT 2.4% Finding employees relationships
Beta(0.01, 1) True values Probabilities 0.5% A(x) = Beta(0.01, 1) and O(x) =

Bernoulli(A(x))
Beta(0.01, 2) True values Probabilities 1% We use the same procedure as directly

above but with Beta(0.01, 2)

3.2.5 Evaluation

We evaluate our algorithms on six real-world and synthetic datasets. We describe the ex-

perimental setup, demonstrate that naive algorithms fail to respect failure probabilities,

demonstrate that our algorithms outperform uniform sampling (as used by prior work), and

that our algorithms are robust to proxy choices.

Experimental Setup

Metrics. Following the query definitions in Section 3.2.2, we are interested in two primary

evaluation metrics. First, we measure the empirical failure rate of the different algorithms:

the rate at which they do not achieve a target recall or precision. Second, we measure the

quality of query results using achieved precision when there is a minimum target recall, and

achieved recall when there is a minimum target precision.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 43

Methods Evaluated. In our evaluation we compare methods that all select records

based on a proxy threshold as in Algorithm 1. The methods differ in their sampling routine

and routine for estimating the proxy threshold τ as described in Section 3.2.4. Note that

NoScope and probabilistic predicates correspond to the baseline algorithms U-NoCI-R and

U-NoCI-P with no guarantees. We can extend these algorithms to provide probabilistic

guarantees in the U-CI-R and U-CI-P algorithms. Finally, our system SUPG uses the

IS-CI-R and IS-CI-P algorithms which introduce importance sampling.2

Many systems additionally compare against full scans. However, this baseline always

requires executing the oracle model on the entire dataset D, requiring |D| oracle model in-

vocations. On large datasets, this approach was infeasible for our collaborators and industry

contacts, so we exclude this baseline from comparison.

Datasets and Proxy Models. We show a summary of datasets used in Table 3.3.

Beta (synthetic). We construct synthetic datasets using proxy scores A(x) drawn from a

Beta(α, β) distribution, allowing us to vary the relationship between the proxy model and

oracle labels. We assign ground truth oracle labels as independent Bernoulli trials based on

the proxy score probability. These synthetic datasets have 106 records and we use two pairs

of (α, β): (0.01, 1) and (0.01, 2).

ImageNet and night-street (image). We use two real-world image datasets to evaluate

SUPG. First, we use the ImageNet validation dataset [153] and select instances of hum-

mingbirds. There are 50 instances of hummingbirds out of 50,000 images or an occurrence

rate of 0.1%. The oracle model is human labeling. Second, we use the commonly used

night-street video [30, 93, 94, 181] and select cars. The oracle model is an expensive,

state-of-the-art object detection method [73]. We resample the positive instances of cars to

set the true positive rate to 4% to better model real-world scenarios where matches are rare.

The proxy model for both datasets is a ResNet-50 [74], which is significantly cheaper

than the oracle model.

OntoNotes and TACRED (text). We use two real-world text datasets (OntoNotes [81]

with fine-grained entities [36] and TACRED [187]). The task for both datasets is relation

extraction, in which the goal is to extract semantic relationships from text, e.g., “organi-

zation” and “founded by.” We searched for city and employees relationships for OntoNotes

and TACRED respectively. The oracle model is human labeling for both datasets.
2Code for our algorithms is available at https://github.com/stanford-futuredata/supg.

https://github.com/stanford-futuredata/supg

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 44

Table 3.4: Summary of distributionally shifted datasets. These shifts are natural (weather
related, different day of video) and synthetic.

Dataset Shifted dataset Description
ImageNet ImageNet-C, Fog ImageNet with fog
night-street Day 2 Different days
Beta(0.01, 1) Beta(0.01, 2) Shifted β parameter

The proxy model for OntoNotes is a baseline provided by with the fine-grained enti-

ties [36]. The proxy model for TACRED is the state-of-the-art SpanBERT model [88]. We

choose different models to demonstrate that SUPG is agnostic to proxy model choice.

Baseline Methods Fail to Achieve Guarantees

We demonstrate that baseline methods fail to achieve guarantees on failure probability.

First, we show that U-NoCI (i.e., uniform sampling from the universe and choosing the

empirical cutoff, Section 3.2.4) fails. Note that U-NoCI is used by prior work. Second, we

show that using U-NoCI on other data, as other systems do, also fails to achieve the failure

probabilities.

U-NoCI fails. To demonstrate that U-NoCI fails to achieve the failure probability, we

show the distribution of precisions and recalls under 100 trials of this algorithm and SUPG’s

optimized importance sampling algorithm. For SUPG, we set δ = 0.05. We targeted a

precision and recall of 90% for both methods.

As shown in Figures 3.7 and 3.8, U-NoCI can fail as much as 75% of the time. Fur-

thermore, U-NoCI can catastrophically fail, returning recalls of under 20% when 90% was

requested. In contrast, SUPG’s algorithms respect the recall targets within the given δ.

U-NoCI fails under model drift. We further show that U-NoCI on different data distribu-

tions also fails to achieve the failure probability. This procedure is used by existing systems

such as NoScope and probabilistic predicates on a given set of data; the cutoff is then used

on other data. These systems assume the data distribution is fixed, a known limitation.

To evaluate the effect of model drift, we allow the U-NoCI to choose a proxy threshold

using oracle labels on the entire training dataset and then perform selection on test datasets

with distributional shift. We compare this with applying the SUPG algorithms using a

limited number of oracle labels from the shifted test set as usual. We summarize the shifted

datasets in Table 3.4. We use naturally occurring instances of drift (obscuration by fog [76],

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 45

20

40

60

80

100

Pr
ec

isi
on

 (%
)

a) ImageNet

70

80

90

100

c) OntoNotes

80

85

90

95

100

e) Beta(0.01, 1.0)

U-NoCI SUPG
Method

80

85

90

95

100

Pr
ec

isi
on

 (%
)

b) night-street

U-NoCI SUPG
Method

70

80

90

100

d) TACRED

U-NoCI SUPG
Method

70

80

90

100

f) Beta(0.01, 2.0)

Figure 3.7: Precision box-plot of 100 trials of U-NoCI and SUPG’s importance sam-
pling algorithm with a precision target of 90%. U-NoCI can fail up to 75% of the time.
Furthermore, it can return precisions as low as 20%.

20

40

60

80

100

Re
ca

ll
(%

)

a) ImageNet

70

80

90

100

c) OntoNotes

80

85

90

95

e) Beta(0.01, 1.0)

U-NoCI SUPG
Method

85.0

87.5

90.0

92.5

95.0

97.5

Re
ca

ll
(%

)

b) night-street

U-NoCI SUPG
Method

75

80

85

90

95

100

d) TACRED

U-NoCI SUPG
Method

80

85

90

95

100

f) Beta(0.01, 2.0)

Figure 3.8: Recall of 100 trials of U-NoCI and SUPG’s sampling algorithm with a recall
target of 90%. U-NoCI can fail up to 50% of the time and even catastrophically fail on
ImageNet, returning a recall of as low at 20%.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 46

Table 3.5: Achieved accuracy of queries when using the empirical cutoff method and SUPG
on data with distributional shift. The naive algorithm deterministically fails to achieve the
targets, i.e., has a failure rate of 100%.

Query Naive SUPG
Dataset type Target accuracy accuracy
ImageNet-C Precision 95% 77% 100%
ImageNet-C Recall 95% 54% 100%
night-street Precision 95% 89% 97%
night-street Recall 95% 89% 96%
Beta Precision 95% 89% 100%
Beta Recall 95% 90% 98%

different day of video) and synthetic drift (change of Beta parameters).

As shown in Table 3.5, baseline methods that do not use labels from the shifted dataset

fail to achieve the target in all settings, even under mild conditions such as different days

of a video. In fact, using the empirical cutoff in U-NoCI can result in achieved targets as

much as 41% lower. In contrast, our algorithms will always respect the failure probability

despite model drift, addressing a limitation in prior work [11, 83, 93, 94, 124].

SUPG Outperforms Uniform Sampling

We show that SUPG’s novel algorithms for selection outperforms U-CI (i.e., uniform sam-

pling with guarantees) in both the precision target and recall target settings. Recall that

the goal is to maximize or minimize the size of the returned set in the precision target and

recall target settings, respectively.

Precision target setting. For the datasets and models described in Table 3.3, we executed

U-CI, one-stage importance sampling, and two-stage importance. We used a budget of 1,000

oracle queries for ImageNet and 10,000 for night-street and the synthetic dataset. We

targeted precisions of 0.75, 0.8, 0.9, 0.95, and 0.99.

We show the achieved precision and recall for the various methods in Figure 3.9. As

shown, the importance sampling method outperforms U-CI in all cases. Furthermore, the

two-stage algorithm outperforms or matches the one-stage algorithm in all cases except

ImageNet. While the specific recalls that are achieved vary per dataset, this is largely due

to the performance of the proxy model.

We note that the ImageNet dataset and proxy model are especially favorable to SUPG’s

importance sampling algorithms. This dataset has a true positive rate of 0.1% and a highly

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 47

0.8 1.0
0

50

100

Re
ca

ll
(%

)

a) ImageNet

U-CI
SUPG
Importance,
one-stage

0.8 1.0

5
10
15

b) night-street

0.8 1.0

25

50

75

c) OntoNotes

0.8 1.0
Precision target

25

50

75

Re
ca

ll
(%

)

d) TACRED

0.8 1.0
Precision target

0

20

40

e) Beta(0.01, 1.0)

0.8 1.0
Precision target

0

20

40

f) Beta(0.01, 2.0)

Figure 3.9: Targeted precision vs achieved recall. Both importance sampling methods
outperform U-CI in all cases. Two-stage importance sampling outperforms all methods and
matches the one-stage importance sampling for ImageNet.

calibrated proxy. A low true positive rate will result in uniform sampling drawing few

positives. In contrast, a highly calibrated proxy will result in many positive draws for

importance sampling.

Recall target setting. For the datasets and models in Table 3.3, we executed U-CI, stan-

dard importance sampling with linear weights ∝ A(x) (Importance, prop), and the SUPG

methods that use sqrt weights. We used the same budgets as in the precision target setting.

We targeted recalls of 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 0.95.

We show the achieved recall and the returned set size for the various methods in Fig-

ure 3.10. As shown, the importance sampling method outperforms U-CI in all cases. Fur-

thermore, using
√
A(x) weights outperforms using linear weights in all cases.

3.2.6 Discussion

In this Section, we developed novel sample-efficient algorithms to execute approximate selec-

tion queries with guarantees. This is in contrast to prior work, including NoScope, which

provides best-effort guarantees. As we show, these best effort algorithms can catastrophi-

cally fail. We define query semantics for precision- and recall-target queries with guarantees

on failure probabilities. We implement and evaluate our SUPG algorithms, showing that

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 48

0.6 0.8
0

10

20

Pr
ec

isi
on

 (%
)

a) ImageNet
U-CI
SUPG
Importance,
prop

0.6 0.8

20

40

b) night-street

0.6 0.8
0

50

c) OntoNotes

0.6 0.8
Recall target

0

50

Pr
ec

isi
on

 (%
)

d) TACRED

0.6 0.8
Recall target

0

50

e) Beta(0.01, 1.0)

0.6 0.8
Recall target

0

20

40

f) Beta(0.01, 2.0)

Figure 3.10: Targeted recall vs precision of the returned set. Up and to the right indicates
higher performance. Importance sampling outperforms or matches U-CI in all cases. Our
sqrt scaling outperforms proportional scaling for importance sampling in all cases, except
for high recall settings.

they outperform existing baselines in prior work. These results indicate the promise of

probabilistic algorithms to answer selection queries with statistical guarantees.

In the remainder of this chapter, we continue to develop algorithms for other query types,

including aggregation and limit queries.

3.3 Approximate Aggregation with Predicates

In addition to answering selection queries, analysts are interested in computing statistics

over large, unstructured datasets where only a fraction of the data is of interest (i.e., with

a selective predicate) with low computational cost. For example, a media studies researcher

may be interested in computing the average viewership (the statistic) of presidential candi-

dates on TV news (the predicate) [80]. To answer such queries, the researcher may deploy

an expensive face detection deep neural network (DNN) to find all faces in the dataset and

filter by presidential candidates, e.g.,

SELECT AVG(views) FROM video
WHERE contains_candidate(frame , ’Biden’)

As discussed in Section 3.2, these predicates are often incredibly expensive to execute. Due

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 49

to limited computational budgets, many organizations cannot exhaustively execute these

expensive ML methods over the entirety of the dataset.

Fortunately, many applications can tolerate approximations (as is standard in the ap-

proximate query processing (AQP) literature [118]) so answering queries does not require

exhaustively executing the expensive DNN. As is standard in AQP, a key requirement with

approximate answers are statistical guarantees on query results. For example, the media

studies researcher may require such guarantees to make precise claims about bias in TV

news. Furthermore, these requirements are standard in scientific analyses. As such, we

focus on queries with statistical guarantees in this work.

Unfortunately, standard techniques in AQP, ranging from histograms [142], sketches [24],

and others [7], assume that the fields used in the predicates are already available, i.e., as

structured records in a database. In contrast, we cannot precompute results as an expensive

ML method is required to compute the predicate in our setting, e.g., we would have to

execute an expensive face detector on every video frame to answer the query above. Recent

work has focused on using cheap approximations (i.e., proxy models) to accelerate queries

without having to pre-compute expensive DNNs [11, 83, 93–95]. For example, a proxy for

presidential candidates might be a cheap classifier in contrast to a full object detection DNN.

Unfortunately, existing work either does not provide statistical guarantees on query accuracy

(e.g., NoScope [94], Focus [83], Tahoma [11]) or accelerates other query types (e.g., selection

queries [95], aggregation queries without predicates [93], and limit queries [93]).

We propose and analyze ABae (Aggregation with Expensive BinAry PrEdicates), a

query processing algorithm leveraging stratified and pilot sampling [107] to accelerate linear

aggregation queries (SUM, COUNT, and AVG) with expensive predicates and statistical guaran-

tees on query accuracy. We further extend ABae to support common aggregation patterns,

including queries with multiple predicates and with group by keys.

ABae leverages two key opportunities to accelerate such queries: proxy models and

stratified sampling. That is, ABae splits the dataset into disjoint groups (strata), samples

within strata, and computes a weighted average to obtain the final answer. ABae must

account for three key challenges, as the predicate results are not available ahead of time: 1)

strata selection, 2) budget allocation between strata, and 3) stochastic draws (i.e., sampling

a record that may not match the predicate). We provide a principled stratification approach,

leverage pilot sampling for budget allocation [107], and provide a novel analysis of stratified

sampling with stochastic draws that shows that ABae converges at an optimal rate.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 50

To address strata selection, ABae uses the proxy model. We assume the proxy provides

information about the likelihood of a record satisfying the predicate [11, 83, 94, 95]. Since

the proxy does not give information about the statistic, we stratify records by proxy score

quantile. Under a mild monotonicity assumption on the proxy [67], this stratification will

group records that are approximately equally likely to match the predicate in the same

stratum. Intuitively, if the proxy is perfect (i.e., matches the predicate) and is independent

of the statistic, this stratification will minimize the sampling variance. While ABae performs

best when given proxy models which approximate the expensive predicate well, ABae still

returns correct answers regardless of proxy model quality.

Given a stratification, our analysis shows that the optimal allocation depends on two

key, per-strata quantities: the fraction of records that match the predicate (pk) and the

standard deviation of the statistic within a stratum (σk). Concretely, the optimal allocation

is proportional to √pkσk. However, we do not know these quantities ahead of time.

ABae proceeds in two stages to address this challenge. First, ABae will estimate pk
and σk using a fraction of the total sampling budget. Then, ABae will allocate the sampling

budget using our plug-in estimates of pk and σk. We prove that ABae’s algorithm matches

the expected error rates of the optimal stratified sampling allocation given the key quantities.

Finally, to provide confidence intervals, ABae uses a bootstrapping procedure which only

adds minimal computational overhead.

We also extend ABae to support group bys (ABae-GroupBy) and complex expres-

sions involving multiple Boolean predicates (ABae-MultiPred). To support group by

statements, we adapt our sample allocation strategy to minimize the maximum of the ex-

pected mean squared error of the groups (minimax error). We show a numerical optimization

procedure can recover the optimal allocation for the minimax error. We also support com-

bining multiple expensive predicates and their respective proxy models through negations,

conjunctions, and disjunctions.

Finally, a key challenge in leveraging proxy models is to ensure efficient query answers

despite potentially poor proxy model quality. Because ABae always produces valid results,

we only need to address efficiency. To address this challenge, we derive a formula which

computes the relative gain of using a given proxy. Then, by using a cheap procedure which

can estimate the quantities in the formula, ABae can calculate expected performance gains

of proxy models and select the best proxy model at query time.

We evaluate ABae and its extensions on six real-world datasets spanning text, images,

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 51

and video. We show that ABae outperforms uniform sampling by up to 2.3×. We also

provide experiments to show that our methods for creating confidence intervals, executing

group by aggregation queries, and forming complex predicates from multiple proxy models

outperforms baselines.

In the remainder of this section, we describe ABae’s query semantics, its query planning,

our statistical analysis of ABae, and our evaluation of ABae.

3.3.1 Overview and Query Semantics

Overview

Target setting. ABae targets aggregation queries that contain one or more predicates

that are expensive to evaluate. These predicates typically require executing expensive DNNs

or querying human labelers. We assume the statistic can be computed in conjunction with

the predicates or is cheap to compute. We support aggregation queries targeting AVG, SUM,

and COUNT statistics. We do not support other aggregation types, such as COUNT DISTINCT

or MAX.

Proxies. We further assume access to a proxy model per predicate, which returns a

continuous value between 0 and 1. While not necessary for correctness, high quality proxies

will return scores that are correlated with the predicate. These proxies can be orders of

magnitude cheaper than oracles (e.g., over 4,000 images/second for the proxy vs 3 fps for the

oracle [100]). Thus, as is standard in the literature, we assume these proxies are substantially

cheaper than the oracle methods so the proxies can be exhaustively executed over the entire

dataset [30, 93, 94, 181].

TV news example. Consider a media studies researcher studying how the presence of

presidential candidate affects viewership. The researcher is willing to query the expensive

DNN at most 10,000 times and computes the average viewership with the following:

SELECT AVG(views) FROM news
WHERE contains_candidate(frame , ’Biden’)
ORACLE LIMIT 10,000 USING proxy(frame)
WITH PROBABILITY 0.95

where contains_candidate is computed via a face detection DNN and the proxy may be

trained via specialization [94].

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 52

SELECT {AVG | SUM | COUNT} ({field | EXPR(field)})
FROM table_name WHERE filter_predicate
[GROUP BY key]
ORACLE LIMIT o USING proxy
WITH PROBABILITY p

Figure 3.11: Syntax for ABae. Users provide a statistic to compute, an expensive predi-
cate, an oracle limit, proxy scores, and a success probability. As is standard for aggregation
queries, users may specify a group by key.

Query Syntax and Semantics

We show the query syntax for ABae in Figure 3.11. As with standard AQP systems, ABae

accepts a sampling budget and a probability of error and will return an approximate answer

to the query and a confidence interval (CI). Our CI semantics are the standard frequentist

CI semantics provided by other AQP systems [7]. In particular, our CI semantics are valid

regardless of proxy quality.

In contrast to standard AQP systems, ABae assumes that the predicate is expensive

to evaluate. We refer to the methods to execute the predicates as “oracles” [93, 95]. These

oracles typically involve executing an expensive DNN and post-processing the result, e.g.,

executing Mask R-CNN to extract object types and positions from a frames of video and

filtering by frames that contain at least two cars. Other use cases may require a human

labeler. We further assume that the statistic is either cheap to compute or can be extracted

by post-processing the oracle results.

To accelerate these queries, the user also provides a proxy function that computes per-

record proxy scores for each predicate. These proxy scores are ideally correlated with the

result of the predicate and substantially cheaper than the oracle predicates. Nonetheless,

our algorithms will provide valid results even if the proxy scores are of poor quality: proxy

correlation will only affect performance, not correctness.

ABae aims to return query results that minimize the mean squared error (MSE) between

the approximate result and the result when exhaustively executing the query. ABae further

aims to return CIs that are as tight as possible while maintaining the probability of success.

3.3.2 Query Formalism

Formally, let D = {xi} be the set of data records, O(x) ∈ {0, 1} be the oracle predicate, and
Xi = f(xi) ∈ R be the expression the query aggregates over. Let D+ = {x ∈ D : O(x) = 1}.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 53

Table 3.6: Summary of notation.

Symbol Description
D Universe of data records
S Stratification, i.e., k strata
P(x) Proxy model
N User-specified sampling budget
K Number of strata
O(x) Oracle predicate
Xk,i ith sample from stratum k
pk Predicate positive rate
pall

∑
k pk

wk Normalized pk, i.e., pk/pall
µk E[Xi,k]
µall

∑
pkµk/pall

σ2k V ar[Xi,k]
N1 Number of samples in Stage 1
N2 Number of samples in Stage 2

Finally, let N be the sample budget.

ABae computes µ =
∑

x∈D+ f(x)/|D+| via an approximation, µ̂, with a fixed sampling

budget N . We measure query result quality by the MSE, i.e., |µ− µ̂|2. ABae returns a CI

[
¯
µ, µ̄]. ABae further aims to minimize the length of the CI µ̄−

¯
µ subject to µ ∈ [

¯
µ, µ̄] with

the specified probability and sample budget, over randomizations of the query procedure.

3.3.3 Algorithm Description and Query Processing

We describe ABae for accelerating aggregation queries with expensive predicates. We de-

scribe accelerating queries with a single predicate in this manuscript and defer a full de-

scription of extensions (queries with a group by key, queries with multiple predicates, and

estimating proxy quality) to Kang et al. [96].

Overview

ABae leverages stratified sampling and pilot sampling [107] to accelerate aggregation queries

with expensive predicates. Namely, ABae splits the dataset into disjoint subsets called

strata. Then, ABae allocates sampling budget to the strata and combines the per-strata

estimates to give the final estimate.

Our setting involves three distinct challenges. First, since not all records satisfy the

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 54

predicate, we may not sample a valid record. This change, while seemingly simple, changes

the optimal allocation and requires new theoretical analysis to prove convergence rates.

Second, we must construct the strata without knowing which records satisfy the predicate.

Third, we do not know pk (the predicate positive rate) and σk (the standard deviation),

which are necessary for computing the optimal allocation.

To address these issues, we leverage a two-stage sampling algorithm. ABae first esti-

mates the key quantities necessary for optimal allocation: pk and σk (also known as pilot

sampling). ABae then uses these estimates to allocate sampling budget in the Stage 2. We

show in Section 3.3.4 that ABae achieves an optimal rate.

Formal Description

Recall that pk is the predicate positive rate and that σ2k is the variance of the statistic.

Furthermore, recall that D is the full dataset, O(x) is the oracle predicate, and Xi are the

samples. Denote Xk,i to be the ith positive sample from stratum k.

Additionally, denote K to be the number of strata, N1 to be the number of samples in

Stage 1, and N2 to be the number of samples in Stage 2, which are parameters to ABae.

ABae will compute several other quantities, including pall =
∑

k pk, wk = pk/pall the

normalized pk, and µk = E[Xk,i] the per stratum mean. We summarize the notation in

Table 3.6.

We present the pseudocode for the sampling algorithm in Algorithm 6. ABae creates

the strata by ordering the records by proxy score and splitting into K strata by quantile.

ABae will then perform a two-stage sampling procedure. In Stage 1, ABae samples

N1 samples from each of the K strata to estimate pk and σk, which are the key quantities

for determining optimal allocation. In Stage 2, ABae will allocate the remaining samples

proportional to our estimates of the optimal allocation.

ABae construct plugin estimates for pk and µk, denoted p̂k and µ̂k respectively. To

compute its final estimates, ABae will use all the samples from Stage 1 and Stage 2 to

compute p̂k and µ̂k. ABae will return the estimate
∑

k p̂kµ̂k/
∑

k p̂k as the approximate

answer.

As the final estimates are sensitive to the estimate of pk, i.e., p̂k, we find that reusing

samples between stages dramatically improves performance.

We defer the proofs of convergence and rates to Section 3.3.4.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 55

Algorithm 6 Pseudocode for ABae. ABae proceeds in two stages. It first estimates pk and
σk. It then samples according to the estimated optimal allocation, T̂k =

√
p̂kσ̂k/

∑K
i=1

√
p̂iσ̂i.

1: function ABaeInit(D, P, K)
2: D ← Sort(D, key = lambda x : P(x))
3: S1, ...,SK ← StratifyByQuantile(D,K)
4: return S
5:
6: function ABaeSample(S, O, K, N1, N2, SampleFn)
7: for each k in [1, ..., K] do . Stage 1
8: R

(1)
k ← SampleFn(Sk, N1) . Rk are sampled records

9: X
(1)
k ← {f(x) | x ∈ R(1)

k , O(x) = 1}

10: µ̂k ←
∑|X(1)

k |
i=1 X

(1)
k,i /|X

(1)
k | if |X

(1)
k | > 0 else 0

11: p̂k ← |X
(1)
k |/|R

(1)
k |

12: σ̂2k ←
∑|X(1)

k |
i=1

(X
(1)
k,i−µ̂k)

2

|X(1)
k |−1

if |X(1)
k | > 1 else 0

13: for each k in [1, ..., K] do
14: T̂k ←

√
p̂kσ̂k/

∑K
i=1

√
p̂iσ̂i

15: for each k in [1, ..., K] do . Stage 2
16: R

(2)
k ← R

(1)
k + SampleFn(Sk, bN2T̂kc)

17: X
(2)
k ← X

(1)
k + {f(x) | x 6∈ R(1)

k , x ∈ R(2)
k , O(x) = 1}

18: p̂k ← |X
(2)
k |/|R

(2)
k |

19: µ̂k ←
∑|X(2)

k |
i=1 X

(2)
k,i /|X

(2)
k | if |X

(2)
k | > 0 else 0

20: return
∑K

k=1 p̂kµ̂k/
∑K

k=1 p̂k, R
(2)

21:
22: function ABae(D, O, P, K, N1, N2)
23: S ← ABaeInit(D,P,K)
24: SampleFn← SampleWithoutReplacement
25: µ̂, R(2) ← ABaeSample(S,O,K,N1, N2, SampleFn)
26: return µ̂

Confidence Intervals

We use the non-parametric bootstrap [51] to compute confidence intervals, which resamples

existing samples. Since the per-stratum samples from both stages of ABae are independent

and identically distributed (i.i.d.), we resample from samples across both stages.

We present the pseudocode for the bootstrap procedure in Algorithm 7. ABae boot-

straps across both stages of the sampling algorithm to form CIs. We formally show the

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 56

Algorithm 7 Bootstrap procedure for computing CIs. We resample existing samples over
both stages of the algorithm.

1: function Bootstrap(R(2), O, K, N1, N2, β, α)
2: for each b in [1, ..., β] do . β is # of bootstrap trials
3: for each k in [1, ..., K] do
4: R∗k ← SampleWithReplacement(R(2)

k , |R(2)
k |)

5: X∗k ← {f(x) | x ∈ R∗k, O(x) = 1}
6: p̂∗k ← |X∗k |/|R∗k|
7: µ̂∗k ←

∑|X∗
k |

i=1 X
∗
k,i/|X∗k | if |X∗k | > 0 else 0

8: µ̂b ←
∑K

k=1 p̂
∗
kµ̂
∗
k/
∑K

k=1 p̂
∗
k

9: return Percentile(α/2, µ̂),Percentile(1− α/2, µ̂)

10:
11: function ABaeWithCI(D, O, P, K, N1, N2, β, α)
12: S ← ABaeInit(D,P,K)
13: SampleFn← SampleWithoutReplacement
14: µ̂, R(2) ← ABaeSample(S,O,K,N1, N2, SampleFn)
15: return µ̂, Bootstrap(R(2),O,K,N1, N2, β, α)

validity of the bootstrap in an extended technical report [98]. We further show that our

procedure produces CIs that are nominally correct in Section 3.3.5.

In standard AQP, the bootstrap is considered an expensive procedure as it requires

resampling and recomputing the statistic. However, in our setting, we assume that the

oracle predicate is expensive to execute. As a result, the bootstrap is computationally cheap

compared to the cost of obtaining the samples. Concretely, in several of our experiments,

executing 1,000 bootstrap trials using unoptimized Python code on a single CPU core is as

expensive as executing 2,500 oracle calls on an NVIDIA T4 accelerator, which corresponds

to under 0.3% of a medium-sized dataset.

3.3.4 Theoretical Analysis

We present a statistical analysis of ABae and its extensions. We first show that a related

sampling procedure achieves rate O
(
1
N

)
assuming perfect knowledge of pk and σk. We then

show that our sampling procedure matches the rate of the optimal strategy. Finally, we

show that our optimization procedure for allocation for group by keys is optimal for the

deterministic setting.

We provide the intuition and theorem statements in this manuscript. We defer the full

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 57

proofs to an extended technical report [98].

Notation and Preliminaries

Notation. Recall the notation in Table 3.6. We emphasize that Xk,i is the ith positive

sample from stratum k, i.e., the ith sample that satisfies the predicate. Furthermore, recall

that µk is the per-stratum mean, pall =
∑
pk be the sum of the pk, and µall be the overall

mean. Finally, recall that wk = pk/pall, the normalized predicate positive rate, which

corresponds to the weighting of µk to µall.

Assumptions and properties. We assume Xk,i is sub-Gaussian with nonzero stan-

dard deviation, a standard assumption for stratified sampling [31]. Sums of sub-Gaussian

variables converge with quantitative rates and this assumption widely holds in practice.

Centered, bounded random variables are sub-Gaussian. The sub-Gaussian assumption gives

the existence of universal constants such that E[|Xk,i|] ≤ C(µ) and V ar[Xi,k] ≤ C(σ2).

We further assume that pall ≥ Cpall > 0, which enforces that at least one stratum has

non-vanishing pk.

Optimal Allocation with Deterministic Draws

We first analyze the setting where we assume perfect knowledge of pk and σk and that we

receive a deterministic, per-stratum number of draws given a sampling budget. Specifically,

given a budget of TkN per stratum, we assume that we receive pkTkN samples, rounded up.

We prove the optimal allocation under a continuous relaxation and the rate when using this

optimal allocation.

Proposition 1. Suppose pk and σk are known and we receive Bk = pkTkN samples per

stratum (up to rounding effects). Then, the choice Tk = T ∗k that minimizes the MSE for the

unbiased estimator µ̂all =
∑

k pkµ̂k/
∑

k pk is

T ∗k =

√
pkσk∑K

i=1

√
piσi

(3.13)

Proposition 2. Suppose the conditions in Proposition 1 hold. Then, the squared error

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 58

under the allocation T ∗k is

E[(µ̂all − µall)
2|Bk = pkT

∗
kN] =

K∑
k=1

w2
kσ

2
k

pkT
∗
kN

(3.14)

=
1

Npall2
·

(
K∑
k=1

√
pkσk

)2

(3.15)

Intuitively, these propositions say for deterministic draws, the optimal allocation down-

weights the standard importance sampling allocation by a factor of √pk. The resulting MSE

decreases linearly with respect to the sample budget and a scaling factor.

We note that uniform sampling with deterministic draws converges at rate σ2

Npavg
, where

pavg =
∑
pk/K. As a result, stratified sampling offers room for improvement. For example,

suppose p1 = 1, pk = 0 for k 6= 1, and that σk = 1 for all k. This corresponds to a

perfect proxy and conditionally independent draws and statistic. Then, uniform sampling

converges at rate K
N , in contrast to stratified sampling’s rate of 1

N . This corresponds to a

K-fold improvement in rate.

ABae with a Single Predicate

We analyze ABae’s two stage sampling algorithm, in which we do not know pk and σk. We

provide the theorem statement, but defer the full proof to an extended technical report [98].

We assume that N2 is suitably large relative to N1 for the remainder of this chapter.

Theorem 2. With high probability over the draws made in Stage 1 and in expectation in

Stage 2,

E[(µ̂all − µall)
2] ≤ O

(
1

N1
+

1

N2
+

√
N1√
N2
· 1

N2

)
(3.16)

Furthermore, if N1 = N2

E[(µ̂all − µall)
2] ≤ O

(
1

N

)
(3.17)

Understanding ABae

We provide an overall proof sketch of the analysis of ABae and highlight several aspects of

the analysis of broader interest.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 59

Proof sketch. Our proof strategy proceeds as follows. We first show that our estimates p̂k
and σ̂k converge to pk and σk in a quantitative way (i.e., with a specific rate). As a result,

our estimate for the optimal allocation will also converge in a quantitative way.

Given the estimate for the optimal allocation, we show that the number of draws in

Stage 2 for all strata will approach the deterministic number of draws, for pk large enough

(larger than 1
N2

). We then show that the error converges appropriately for the strata with

pk large enough and that the error for the remaining strata becomes negligible. As a result,

our final estimate converges with rate O(1
N).

Challenges. We describe several challenges in the analysis of ABae. Prior work has

focused on known, deterministic per-strata costs and variances. In contrast, our problem

does not have a cost, but rather a stochastic probability of receiving useful information. We

study this stochastic draw case and prove that using pilot sampling with plug-in estimates

[107] is valid and near optimal.

Most work in stratified sampling assumes that features of the data distributions within

each stratum are known and constructs optimal allocations of samples using this information.

In our setting, these quantities must be estimated, which may not be possible when pk is

small. For example, if pk = 1
N2 for some stratum, then we may not draw even a single

positive record from that stratum, making pk and σk impossible to estimate.

Furthermore, in contrast to standard stratified sampling, we may draw a record that

does not satisfy the predicate. As a result, for a fixed number of draws, the number of

records matching a predicate is stochastic. Most work on stratified sampling assumes a

deterministic allocation of samples to strata.

When the number of draws for some arbitrary M from a stratum and the probability pk
of matching the predicate are both large, the number of positive records concentrates around

pkM and the resulting estimator has similar properties to one with pkM deterministic draws.

However, if pkM is small, this analysis breaks down.

Finally, show that ABae converges at the optimal rate, we compare to the setting

of deterministic draws and perfect information. Given perfect information of pk and σk,

the optimal allocation is given by Proposition 1 and its MSE is given by Proposition 2.

However, this allocation cannot be achieved in general, as it results in fractional sampling.

Nonetheless, we show that our sampling procedure, which rounds down the ideal fractional

allocations, achieves the same O
(
1
N

)
rate. Thus, rounding does not affect the convergence

rate of our procedure.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 60

Statistical intuition. Our primary tool for dealing with unknown quantities and stochas-

tic draws is dividing the strata into groups: where pk is large and where pk is small. Since

the number of positive draws is Binomial, we apply standard convergence to the total num-

ber of positive draws when pk is large. For stratum where pk is small, the contribution of

that stratum to the total error is at most pkC(µ), which does not increase the asymptotic

error. To illustrate our technique, consider the following proposition.

Proposition 3. Recall that N1 and N2 are the number of samples in Stages 1 and 2

respectively. With high probability in Stage 1 and if N1 is a constant multiple of N2 as N

grows, the MSE of the error in Stage 2 can be written as

E
[
(µ̂all − µall)

2
]

=

K∑
k=1

ŵ2
kVar(µ̂k) +O

(
1

N1
+

1

N2

)
(3.18)

where ŵk = p̂k/
∑
p̂k.

As shown in Eq. 3.18, the overall MSE is bounded above by the sum of ŵ2
kVar(µ̂k),

which are per-strata quantities. We then bound these quantities for strata where pk is

(quantitatively) large or small. Specifically, define p∗ =
2 ln(1/δ)+2

√
ln(1/δ)+2

N1
= O

(
1
N1

)
for

failure probability δ. Furthermore, we assume that N1 is a constant multiple of N2 as N

grows. We divide the strata into cases based on whether pk > p∗ or pk ≤ p∗
Consider the case where pk > p∗. By standard concentration arguments, the number of

positive samples in Stage 2 concentrates to its expectation, which is large. Thus, ŵ2
kVar(µ̂k)

decays at rate (approximately) O
(

1
N2

)
by standard concentration arguments. For pk ≤

p∗, we can directly bound the contribution. To understand this, consider the following

proposition.

Proposition 4.

ŵ2
kVar[µ̂k] ≤ ŵ2

k

(
E

[
σ2k

B
(2)
k

|B(2)
k > 0

]
+ P (B

(2)
k = 0)µ2k

)
(3.19)

≤ O
(

1

N1
+

1

N2
+

√
N1√
N2
· 1

N2

)
(3.20)

where B(2)
k is the number of positive draws in Stage 2.

Proof sketch. The key challenge is bounding quantities involving B(2)
k . Suppose counterfac-

tually that B(2)
k were deterministic: then the expression would correspond to the standard

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 61

variance of an i.i.d. estimator. The variance if an i.i.d. estimator decays as 1/B
(2)
k . However,

since we obtain a stochastic number of draws, we must condition on the event of non-zero

draws and take the expectation. Since the draws are binomial in distribution, the leading

order converges a.s. to its mean value, which would give the desired bound in this toy setting.

We now adapt this strategy to account for B(2)
k being stochastic in ABae. For pk > p∗,

B
(2)
k is approximately pkT ∗kN2 with high probability. As a result, with high probability, each

stratum had sufficient samples to form estimates. We can complete the proof similarly to

the toy setting with deterministic B(2)
k .

However, if pk < p∗, we may not draw the requisite number of samples. For example, if

pk = 1
N2 , we would not obtain any samples on average. Thus, our analysis must consider

the case where pk < p∗ separately. When pk is small, we can directly bound the contribution

of the sum. Namely, ŵ2
k = O(1/N2) as pk ≤ C1

N and the remainder of the quantities are

bounded by a constant.

The bound follows from considering the strata where pk is small and where pk is large.

3.3.5 Evaluation

We evaluate ABae and its extensions on six real world datasets and synthetic datasets.

We first describe the experimental setup and baselines. We then demonstrate that ABae

outperforms baselines in all settings we consider. For brevity, we defer experiments showing

that ABae’s sample reuse is effective and ABae is not sensitive to hyperparameters.

Experimental Setup

Datasets, target DNNs, and proxies. We consider six real world datasets, including

text, still images, and videos. We additionally consider synthetic datasets for some settings.

We used the night-street (also known as jackson) and taipei video datasets, which

are commonly used for video analytics evaluation [30, 86, 93, 94, 181]. We executed the

following query:

SELECT AVG(count_cars(frame)) FROM video
WHERE count_cars(frame) > 0

which computes the average number of cars in the video, where a car is present. We use

Mask R-CNN to compute the oracle [73] and an efficient index for the proxy scores [97].

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 62

We used the celeba dataset [121], an image dataset of celebrity faces that contains

annotations of celebrity names and other attributes, such as hair color. We executed the

following query:

SELECT PERCENTAGE(is_smiling(img)) FROM images
WHERE hair_color(img) = ’blonde ’

which computes the fraction of images where the celebrity is smiling conditioned on the

celebrity having blonde hair. We used the human labels in the celeba dataset as the

ground truth. We used a specialized MobileNetV2 [155] as the proxy.

We used the TREC public spam corpora from 2005 (trec05p) [43]. We used the SPAM25

subset. We executed the following query:

SELECT AVG(NB_LINKS(text)) FROM emails
WHERE is_spam(text)

which computes the average number of links for spam emails. We used human labels as

ground truth. We used a manual, keyword-based proxy based on the presence of words

(e.g., “money,” “please”).

We used Amazon movie reviews and posters, which was generated from the Amazon

reviews dataset [132]. We scraped the movie posters from the metadata and excluded

reviews that did not have posters. We executed the following query:

SELECT AVG(rating) FROM movies
WHERE face_exists(poster) AND gender(poster) = ’female ’

which computes the average rating of posters with a female actress. We use MT-CNN to

extract faces [185] and VGGFace pretrained from deepface [157] to classifier gender as the

ground truth. We use a specialized MobileNetV2 as a proxy [155].

We used the Amazon reviews dataset [132] which is a dataset of textual reviews from

Amazon. We subset to the office supplies reviews. We executed the following query:

SELECT AVG(rating) FROM data
WHERE sentiment(review) = ’strongly␣positive ’

which computes the average rating of reviews with strongly positive sentiment. We use a

BERT-based sentiment classifier provided by FlairNLP to compute the oracle filter [8] and

the NLTK sentiment predictor, a simple rule-based classifier, for the proxy [84].

Metrics. Our primary metric is the RMSE of the true and estimated values: we use the

RMSE so that the units are on the same scale as the original value. We additionally compare

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 63

0.0
10

0.0
15

0.0
20

0.0
25

RM
SE

a) night-street
Method

ABae
Uniform

0.0
05

00.0
07

50.0
10

00.0
12

5

b) taipei

1.0

1.5

2.0

2.5

3.0

RM
SE

c) celeba

5000 10000
Budget

0.0
4

0.0
6

0.0
8

RM
SE

d) amazon-movies

5000 10000
Budget

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

e) trec05p

5000 10000
Budget

0.02

0.03

0.04

0.05

RM
SE

f) amazon-office

Figure 3.12: Sampling budget vs RMSE for uniform sampling and ABae. ABae outper-
forms on all budgets and datasets we evaluated on. ABae can outperform by up to 1.5×
on RMSE at a fixed budget and achieve the same error with up to 2× fewer samples.

the number of samples required to achieve a particular error target in some experiments.

We measure the cost in terms of oracle predicate invocations as it is the dominant cost of

query execution by orders of magnitude.

Methods evaluated. We compare ABae to uniform sampling. A range of standard

AQP techniques are not applicable to our setting, since the results of the predicate are not

available at ingest time. For example, techniques that create histograms [45, 142, 144] or

sketches [58, 59] as ingest time are not applicable.

Implementation. We implement ABae’s sampling procedure in Python for ease of

integration with deep learning frameworks. Our open-sourced code is available at https:

//github.com/stanford-futuredata/abae.

End-to-end Performance

Single predicate. We show that ABae outperforms uniform sampling on the metric of

RMSE. For each dataset and query, we executed ABae and random sampling for sampling

budgets of 2,000 to 10,000 in increments of 2,000. We used five strata and allocated half

budget to each stage. We used a failure probability of 5% for every condition. We ran every

condition 1,000 times.

https://github.com/stanford-futuredata/abae
https://github.com/stanford-futuredata/abae

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 64

2000 4000 6000 8000 10000
Budget

0.5

1.0

1.5

No
rm

al
ize

d
Q-

er
ro

r

a) night-street
Method

Uniform
ABae

2000 4000 6000 8000 10000
Budget

5.0

7.5

10.0

12.5

b) trec05p

Figure 3.13: Sampling budget vs normalized Q-error for uniform sampling and ABae,
with the standard deviation shaded. We see that ABae outperforms on Q-error. The same
trends hold for all other datasets.

0.0
4

0.0
6

0.0
8

0.1
0

W
id

th

a) night-street
Method

Uniform
ABae

0.0
2

0.0
3

0.0
4

0.0
5

b) taipei

4

6

8

10

W
id

th

c) celeba

5000 10000
Budget

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

W
id

th

d) amazon-movies

5000 10000
Budget

0.4
0.6
0.8
1.0
1.2

e) trec05p

5000 10000
Budget

0.10

0.15

0.20

W
id

th
f) amazon-office

Figure 3.14: Sampling budget vs CI width for uniform sampling and ABae. ABae can
outperform by up to 1.5× on CI width at a fixed budget and achieve the same width with
up to 2× fewer samples.

As shown in Figure 3.12, ABae outperforms for every dataset, query, and budget setting

we consider. ABae can achieve up to 2.3× improvements in RMSE at a fixed budget or up

to 2× fewer samples at a fixed error rate.

We further show that ABae outperforms on Q-error [130], a relative error metric that

penalizes under- and over-estimation symmetrically. We show the normalized Q-error (i.e.,

100× (q − 1)) in Figure 3.13. As shown, ABae outperforms on the two datasets we show–

ABae also outperforms on all the other datasets by 14-70%, which we omit for brevity.

ABae similarly outperform on relative error by 13-76%.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 65

We further show that ABae outperforms on the metric of confidence interval (CI) width.

For each dataset and query, we executed ABae and random sampling with the parameters

above. We ran every condition 1,000 times.

ABae outperforms for every dataset, query, and budget setting we consider (Figure 3.14).

ABae can outperform by up to 1.5× on CI width at a fixed budget. Furthermore, to achieve

the same confidence interval width, ABae can use up to 2× fewer samples. Finally, ABae

satisfies the nominal coverage across all datasets and settings.

Discussion of results. To contextualize our results, we first note that relative errors

for some of the datasets are as high as 12% (Figure 3.13b). A 2× decrease in error (or

number of samples at a fixed error) represents a substantial improvement. Our ongoing

collaborations at Stanford University and elsewhere require expert human labeling as part

of scientific studies. Requiring 2× fewer human labels is a substantial decrease.

3.3.6 Discussion

In this section, we describe query semantics for approximate aggregation queries with ex-

pensive predicates. Unfortunately, prior work on approximate selection does not directly

answer these queries with guarantees on query accuracy.

To address this, we develop novel sample-efficient algorithms to reduce the cost of ap-

proximate aggregation queries with expensive predicates. Our algorithm leverage proxy

models to accelerate such queries. We provide proofs of convergence in our setting: strat-

ified sampling with stochastic draws. We show that ABae achieves optimal rates. ABae

outperforms baselines by up to 2.3× on a wide range of domains and predicates.

3.4 BlazeIt

In the proceeding sections, I have described how to generate proxies in a per-query manner,

accelerate selection queries, and accelerate aggregation queries with a predicate. However,

these optimizations do not handle two key classes of queries: aggregate and limit queries.

For example, an analyst may want to count the average number of cars per frame (aggregate

query) or manually inspect only 10 instances of a bus and five cars (limit query) to under-

stand congestion. Approximate filtering is inefficient for these queries, e.g., filtering for cars

will not significantly speed up counting cars if 90% of the frames contain cars. Furthermore,

these optimizations still require non-expert users to write complex code to deploy.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 66

Target
DNN

Answer

Query

Materialized
Relation

Custom
Code

DBMS

Video

2.3
buses/frame

User-written

(a) Schematic of the naive method of querying
video. Naively using DNNs or human annotators
is too expensive for many applications.

BlazeIt: Query-aware Optimization
Video

Target DNN

Virtual Relation
(materialized on demand)

Query Processor
(specialized NNs)

SELECT FCOUNT(*)
FROM taipei
WHERE class = 'car'
ERROR WITHIN 0.1
AT CONFIDENCE 95%

Answer
2.3

buses/frame

FrameQL Query

(b) Schematic of BlazeIt. BlazeIt will cre-
ate optimized query plans and avoid calling the
expensive DNN where possible.

Figure 3.15: Schematic of the naive method of querying video and BlazeIt. BlazeIt
does not require writing complex code and does not require pre-materializing all the tuples.

To address these challenges, I describe BlazeIt, a video analytics system with a declara-

tive query language and two novel optimizations for aggregation and limit queries. BlazeIt’s

declarative query language, FrameQL, extends SQL with video-specific functionality and

allows users familiar with SQL to issue video analytics queries. Since queries are expressed

declaratively, BlazeIt can automatically optimize them end-to-end with its query optimizer

and execution engine. Finally, BlazeIt provides two novel optimizations for aggregation

and limit queries that outperforms prior work, including NoScope [94] and approximate

query processing (AQP), by up to 83×.
FrameQL allows users to query information of objects in video through a virtual re-

lation. Instead of fully materializing the FrameQL relation, BlazeIt uses optimizations

to reduce the number of object detection invocations while meeting an accuracy guarantee

based on the specification of the FrameQL query (Figure 3.15). FrameQL’s relation rep-

resents the information of positions and classes of objects in the video. Given this relation,

FrameQL can express selection queries in prior work [11, 30, 94, 124], along with new

classes of queries, including aggregation and limit queries (Section 3.4.2).

Our first optimization, to answer aggregation queries, uses query-specific NNs (i.e., spe-

cialized NNs [94]) as a control variate or to directly answer queries (Section 3.4.4). Control

variates are a variance reduction technique that uses an auxiliary random variable that is

correlated with the statistic of interest to reduce the number of samples necessary for a

given error bound [69]. We show how to use specialized NNs as a control variate, a novel use

of specialized NNs (which have been used for approximate filtering). In contrast, standard

random sampling does not leverage proxy models and prior work (filtering) is inefficient

when objects appear frequently.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 67

Our second optimization, to answer cardinality-limited queries (e.g., a LIMIT query for

10 frames with at least three cars), evaluates object detection on frames that are more likely

to contain the event using proxy models (Section 3.4.5). By prioritizing frames to search

over, BlazeIt can achieve exact answers while speeding up query execution. In contrast,

filtering is inefficient for frequent objects and random sampling is inefficient for rare events.

Importantly, both of our optimizations provide exact answers or accuracy guarantees

regardless of the accuracy of the specialized NNs. Furthermore, both of these optimizations

can be extended to account for query predicates.

BlazeIt incorporates these optimizations in an end-to-end system with a rule-based

query optimizer and execution engine that efficiently executes FrameQL queries. Given

query contents, BlazeIt will generate an optimized query plan that avoids executing object

detection wherever possible, while maintaining the user-specified accuracy (relative to the

object detection method as ground truth).

We evaluate BlazeIt on a variety of queries on four video streams that are widely used

in studying video analytics [30, 83, 86, 94, 181] and two new video streams. We show that

BlazeIt can achieve up to 14× and 83× improvement over prior work in video analytics

and AQP for aggregation and limit queries respectively.

In the remainder of this Section, we describe BlazeIt’s architecture, FrameQL’s syntax

and semantics, BlazeIt’s query optimization strategies, and our evaluation of BlazeIt.

3.4.1 BlazeIt System Overview

BlazeIt’s goal is to execute FrameQL queries as quickly as possible; we describe FrameQL

in §3.4.2. To execute FrameQL queries, BlazeIt uses a target object detection method, an

entity resolution method, and the optional user-defined functions (UDFs). We describe the

specification of these methods in this section. Importantly, we assume the object detection

class types are provided.

BlazeIt executes queries quickly by avoiding materialization using the techniques de-

scribed §3.4.4 and §3.4.5. BlazeIt uses proxy models, typically specialized neural net-

works [94, 159], to avoid materialization (Figure 3.15b), which we describe below.

Configuration. We assume the target object detection method is implemented with the

following API:

OD(frame)→ Set<Tuple<class, box» (3.21)

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 68

and the object classes (i.e., types) are provided. We assume the entity resolution takes two

nearby frames and boxes and returns true if the boxes correspond to the same object. While

we provide defaults, the object detection and entity resolution methods can be changed,

e.g., a license plate reader could be used for resolving the identity of cars. The UDFs can be

used to answer more complex queries, such as determining color, filtering by object size or

location, or fine-grained classification. UDFs are functions that accept a timestamp, mask,

and rectangular set of pixels. For example, to compute the “redness” of an object, a UDF

could average the red channel of the pixels.

Target-model annotated set (TMAS). At ingestion time, BlazeIt will perform object

detection over a small sample of frames of the video with the target object detection NN

and will store the metadata as FrameQL tuples, which we call the target-model annotated

set (TMAS). This procedure is done when the data is ingested and not per query, i.e., it is

performed once, offline, and shared for multiple queries later. For a given query, BlazeIt

will use the TMAS to materialize training data to train a query-specific proxy model; details

are given in §3.4.4 and §3.4.5. The TMAS is split into training data and held-out data.

Proxy models and specialized NNs. BlazeIt can infer proxy models and/or filters

from query predicates, many of which must be trained from data. These proxy models can

be used to accelerate query execution with accuracy guarantees.

Throughout, we use specialized NNs [94, 159], specifically a miniaturized ResNet [74],

as proxy models. A specialized NN is a NN that mimics a larger NN (e.g., Mask R-CNN)

on a simplified task, e.g., on a marginal distribution of the larger NN. As specialized NNs

predict simpler output, they can run dramatically faster.

BlazeIt will infer if a specialized NN can be trained from the query specification.

For example, to replicate NoScope’s binary detection, BlazeIt would infer that there is a

predicate for whether or not there is an object of interest in the frame and train a specialized

NN to predict this. Prior work has used specialized NNs for binary detection [71, 94], but

we extend specialization for aggregation and limit queries.

3.4.2 FrameQL: Expressing Complex Spatiotemporal Visual Queries

To address the need for a unifying query language over video analytics, we introduce

FrameQL, an extension of SQL for querying spatiotemporal information of objects in video.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 69

Table 3.7: FrameQL’s data schema contains spatiotemporal and content information
related to objects of interest, as well as metadata (class, identifiers).

Field Type Description
timestamp float Time stamp
class string Object class (e.g., bus, car)
mask (float, float)* Polygon containing the object of interest, typically a rectangle
trackid int Unique identifier for a continuous time segment when the

object is visible
content float* Content of pixels in mask
features float* The feature vector output by the object detection method.

By providing a table-like schema using the standard relational algebra, we enable users famil-

iar with SQL to query videos, whereas implementing these queries manually would require

expertise in deep learning, computer vision, and programming.

FrameQL is inspired by prior query languages for video analytics [49, 113, 115, 122],

but FrameQL specifically targets information that can be populated automatically using

computer vision methods. We discuss differences in detail at the end of this section.

FrameQL data model. FrameQL represents videos (possibly compressed in formats

such as H.264) as virtual relations, with one relation per video. Each FrameQL tuple

corresponds to a single object in a frame. Thus, a frame can have zero or more tuples (i.e.,

zero or more objects), and the same object can have one or more tuples associated with it

(i.e., appear in several frames).

We show FrameQL’s data schema in Table 3.7. It contains fields relating to the time,

location, object class, and object identifier, the box contents, and the features from the

object detection method. BlazeIt can automatically populate mask, class, and features

from the object detection method (see Eq. 3.21), trackid from the entity resolution method,

and timestamp and content from the video metadata. Users can override the default object

detection and entity resolution methods. For example, an ornithologist may use an object

detector that can detect different species of birds, but an autonomous vehicle analyst may

not need to detect birds at all.

FrameQL query format. FrameQL allows selection, projection, and aggregation of

objects, and, by returning relations, can be composed with standard relational operators.

We show the FrameQL syntax in Figure 3.16. FrameQL extends SQL in three ways: GAP,

syntax for specifying an error tolerance (e.g., ERROR WITHIN), and FCOUNT. Notably, we do

not support joins as we do not optimize for joins in this work, but we describe how to extend

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 70

SELECT * | expression [, ...]
FROM table_name
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[LIMIT count]
[GAP count]
[ERROR WITHIN tol AT CONFIDENCE conf]

Figure 3.16: FrameQL syntax. As shown, FrameQL largely inherits SQL syntax.

Table 3.8: Additional syntactic elements in FrameQL.

Syntactic Description
FCOUNT Frame-averaged count (equivalent to time-averaged count), i.e.,

COUNT(*) / MAX(timestamp)
ERROR WITHIN Absolute error tolerance
FPR WITHIN Allowed false positive rate
FNR WITHIN Allowed false negative rate
CONFIDENCE Confidence level
GAP Minimum distance between returned frames

FrameQL with joins in an extended version of this chapter [93]. We show FrameQL’s

extensions Table 3.8; several were taken from BlinkDB [7]. We provide the motivation

behind each additional piece of syntax.

First, when the user selects timestamps, the GAP keyword ensures that the returned

frames are at least GAP frames apart. For example, if 10 consecutive frames contain the

event and GAP = 100, only one frame of the 10 frames would be returned.

Second, as in BlinkDB [7], users may wish to have fast responses to exploratory queries

and may tolerate some error. Thus, we allow the user to specify error bounds in the form

of maximum absolute error, false positive error, and false negative error, along with a spec-

ified confidence level. NoScope’s pipeline can be replicated with FrameQL using these

constructs. We choose absolute error bounds in this work as the user may inadvertanely

execute a query with 0 records, which would require scanning the entire video (§3.4.4).

We also provide a short-hand for returning a frame-averaged count, which we denote as

FCOUNT. For example, consider two videos: 1) a 10,000 frame video with one car in every

frame, 2) a 10 frame video with a car only in the first frame. FCOUNT would return 1 in the

first video and 0.1 in the second video. As videos vary in length, this allows for a normalized

way of computing errors. FCOUNT can easily be transformed into a time-averaged count.

Window-based analytics can be done using the existing GROUP BY keyword.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 71

Table 3.9: A comparison of object detection methods, filters, and speeds. More accurate
object detection methods are more expensive.

Method mAP FPS
YOLOv2 [149] 25.4 80
Mask R-CNN [73] 45.2 3
Specialized NN N/A 35k
Decoding low-resol video N/A 62k
Color filter N/A 100k

Comparison to prior languages. Prior visual query engines have proposed similar

schemas, but assume that the relation is already populated [112, 117], i.e., that the data

has been created through external means (typically by humans). In contrast, FrameQL’s

relation can be automatically populated by BlazeIt. However, as we focus on exploratory

queries in this work, FrameQL’s schema is virtual and rows are only populated as necessary

for the query at hand, which is similar to an unmaterialized view. This form of laziness

enables a variety of optimizations via query planning.

3.4.3 Query Optimizer Overview

Overview. BlazeIt’s primary challenge is executing FrameQL queries efficiently : recall

that object detection is the overwhelming bottleneck (Table 3.9). To optimize and execute

queries, BlazeIt inspects query contents to see if optimizations can be applied. For exam-

ple, BlazeIt cannot optimize aggregation queries without error bounds, but can optimize

aggregation queries with a user-specified error tolerance.

BlazeIt leverages two novel optimizations to reduce the computational cost of object

detection, targeting aggregation (§3.4.4) and limit queries (§3.4.5). As the filters and spe-

cialized NNs we consider are cheap compared to the object detection methods, they are

almost always worth calling: a filter that runs at 100,000 fps would need to filter 0.003%

of the frames to be effective (Table 3.9). Thus, we have found a rule-based optimizer to be

sufficient in optimizing FrameQL queries.

Both of BlazeIt’s novel optimizations share a key property: they still provide accuracy

guarantees despite using potentially inaccurate specialized NNs. Specifically, both optimiza-

tion will only speed up query execution and will not affect the accuracy of queries; full details

are in §3.4.4 and §3.4.5.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 72

BlazeIt also can optimize exhaustive selection queries with predicates by implementing

optimizations in prior work, such as using NoScope’s specialized NNs as a filter [94, 124].

As this case has been studied, we defer the discussion of BlazeIt’s query optimization for

exhaustive selection to an extended chapter [93].

BlazeIt’s rule-based optimizer will inspect the query specification to decide which op-

timizations to apply. First, if the query specification contains an aggregation keyword, e.g.,

FCOUNT, BlazeIt will apply our novel optimization for fast aggregation. Second, if the

query specification contains the LIMIT keyword, BlazeIt will apply our novel optimiza-

tion for limit queries. Finally, for all other queries, BlazeIt will default to applying filters

similar to NoScope’s [94].

Work reuse. In addition to our novel optimizations, BlazeIt can reuse work by storing

the specialized NN model weights and their results. The specialized NNs BlazeIt uses are

small, e.g., < 2 MB, compared to the size of the video.

We describe the intuition, the physical operator(s), its time complexity and correctness,

and the operator selection procedure for aggregates (§3.4.4) and limit queries (§3.4.5) below.

3.4.4 Optimizing Aggregates

Overview. In an aggregation query, the user is interested in some statistic over the data,

such as the average number of cars per frame. To provide exact answers, BlazeIt must call

object detection on every frame, which is prohibitively slow. However, if the user specifies

an error tolerance, BlazeIt accelerate query execution using two novel optimizations.

We focus on optimizing counting the number of objects in a frame. BlazeIt requires

training data from the TMAS of the desired quantity (e.g., number of cars) to leverage

specialized NNs. If there is insufficient training data, BlazeIt will default to random

sampling. If there is sufficient training data, BlazeIt will first train a specialized NN to

estimate the statistic: if the specialized NN is accurate enough, BlazeIt can return the

answer directly. Otherwise, BlazeIt will use specialized NNs to reduce the variance of AQP

via control variates [69], requiring fewer samples. We next describe these steps in detail.

Operator Selection. The process above is formalized in Algorithm 8. BlazeIt will

process the TMAS into training data for a specialized NN by materializing labels, i.e.,

counts. Given these labels, BlazeIt first determines whether there is sufficient training

data (> 1% of the data has instances of the object) to train a specialized NN. In cases

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 73

Algorithm 8 BlazeIt’s aggregation query procedure. BlazeIt will use specialized NNs
for accelerated query execution via control variates or query rewriting where possible.
function BlazeItAggregation(TMAS, unseen video, uerr, conf)

if training data has instances of object then
train specialized NN on TMAS
err ← specialized NN error rate
τ ← average of specialized NN over unseen video
if P (err < uerr) < conf then

return τ
else

m̂← result of Equation 3.22 (control variates)
return m̂

else
return result of random sampling.

where the training data does not contain enough examples of interest (e.g., a video of a

street intersection is unlikely to have bears), BlazeIt will default to standard random

sampling. We use an adaptive sampling algorithm that respects the user’s error bound but

can terminate early based on the variance of the sample [129].

When there is sufficient training data, BlazeIt will train a specialized NN and esti-

mate its error rate on the held-out set. If the error is smaller than the specified error at

the confidence level, it will then execute the specialized NN on the unseen data and return

the answer directly. For specialized NN execution, BlazeIt will subsample at twice mini-

mum frequency of objects appearing; the minimum frequency is estimated from the TMAS.

Sampling at this rate, i.e., the Nyquist rate [135], will ensure that BlazeIt will sample all

objects. As specialized NNs are significantly faster than object detection, this procedure

results in much faster execution.

When the specialized NN is not accurate enough, it is used as a control variate: a

cheap-to-compute auxiliary variable correlated with the true statistic. Control variates can

approximate the statistic with fewer samples than naive random sampling.

Physical Operators. We describe the procedures for sampling, query rewriting, and

control variates below.

Sampling. For approximate queries without sufficient training data for a specialized NN,

BlazeIt samples from the video, populating at most a small number of rows for faster

execution. Similar to online aggregation [75], we provide absolute error bounds, but the

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 74

algorithm could be easily modified to give relative error bounds. BlazeIt uses Empirical

Bernstein stopping (EBS) [129], which allows for early termination based on the variance,

which is useful for control variates. We specifically use Algorithm 3 in [129]; we give an

overview of this algorithm in an extended version of this chapter [93].

EBS is an always valid, near-optimal stopping rule for bounded random variables. EBS

is always-valid in the sense that when EBS terminates, it will respect the user’s error bound

and confidence; the guarantees come from a union bound [129]. EBS is near-optimal in the

following sense. Denote the user-defined error and confidence as ε and δ. Denote the range

of the random variable to be R. EBS will stop within c · log log 1
ε·|µ| of any optimal stopping

rule that satisfies ε and δ. Here, c is a constant and |µ| is the mean of the random variable.

Query Rewriting via Specialized NNs. In cases where the specialized NN is accurate enough

(as determined by the bootstrap on the held-out set; the accuracy of the specialized NN

depends on the noisiness of the video and object detection method), BlazeIt can return

the answer directly from the specialized NN run over all the frames for dramatically faster

execution and bypass the object detection entirely. BlazeIt uses multi-class classification

for specialized NNs to count the number of objects in a frame.

To train the specialized NN, BlazeIt selects the number of classes equal to the highest

count that is at least 1% of the video plus one. For example, if 1% of the video contains

3 cars, BlazeIt will train a specialized NN with 4 classes, corresponding to 0, 1, 2, and 3

cars in a frame. BlazeIt uses 150,000 frames for training and uses SGD with momentum

for one epoch with a learning rate of 0.1.

BlazeIt estimates the error of the specialized NN on a held-out set using the boot-

strap [51]. If the error is low enough at the given confidence level, BlazeIt will process the

unseen data using the specialized NN and return the result.

Control Variates. In cases where the user has a stringent error tolerance, specialized NNs

may not be accurate enough to answer a query on their own. To reduce the cost of sampling

from the object detector, BlazeIt introduces a novel method of using specialized NNs

while still guaranteeing accuracy. In particular, we adapt the method of control variates [69]

to video analytics (to our knowledge, control variates have not been applied to database

query optimization or video analytics). Specifically, control variates is a method of variance

reduction [87, 152]) which uses a proxy variable correlated with the statistic of interest.

Intuitively, by reducing the variance of sampling, we can reduce the number of frames that

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 75

have to be sampled and processed by the full object detector.

To formalize this intuition, suppose we wish to estimate the expectation m and we have

access to an auxiliary variable a. The desiderata for a are that: 1) a is cheaply computable,

2) a is correlated withm (see time complexity). We further assume we can compute E[a] = α

and Var(a) exactly. Then,

m̂ = m+ c · (a− α) (3.22)

is an unbiased estimator ofm for any choice of c [69]. The optimal choice of c is c = −Cov(m,a)
Var(a)

and using this choice of c gives Var(m̂) = (1−Corr(m, a)2)Var(m). As an example, suppose

a = m. Then, m̂ = m+ c(m− E[m]) = E[m] and Var(m̂) = 0.

This formulation works for arbitrary a, but choices where a is correlated with m give the

best results. As we show in Section 3.4.6, specialized NNs can provide a correlated signal

to the ground-truth object detection method for all queries we consider.

As an example, suppose we wish to count the number of cars per frame. Then, m is

the random variable denoting the number of cars the object detection method returns. In

BlazeIt, we train a specialized NN to count the number of cars per frame. Ideally, the

specialized NN would exactly match the object detection counts, but this is typically not the

case. However, the specialized NNs are typically correlated with the true counts. Thus, the

random variable a would be the output of the specialized NN. As our choice of specialized

NNs are extremely cheap to compute, we can calculate their mean and variance exactly on

all the frames. BlazeIt estimates Cov(m, a) at every round.

Aggregation with query predicates. A user might issue an aggregation query with

predicates, such as filtering for large red buses. In this case, BlazeIt will execute a similar

procedure above, but first applying the predicates to the training data. The key difference

is that in cases where there is not enough training data, BlazeIt will instead generate a

specialized NN to count the most selective set of predicates that contains enough data.

For example, consider a query that counts the number of large red buses. If there is not

enough data to train a specialized NN that counts the number of large red buses, BlazeIt

will instead train a specialized NN that counts the number of large buses (or red buses,

depending on the training data). If there is no training data for the quantity of interest,

BlazeIt will default to standard sampling.

As control variates only requires that the proxy variable, i.e., the specialized NN in this

case, be correlated with the statistic of interest, BlazeIt will return a correct answer even

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 76

if it trains a specialized NN that does not directly predict the statistic of interest.

Correctness. The work in [129] proves that EBS is an always valid, near-optimal stopping

rule. Briefly, EBS maintains an upper and lower bound of the estimate that always respects

the confidence interval and terminates when the error bound is met given the range of

the data. We estimate the range from the TMAS. Furthermore, while video is temporally

correlated, we assume all the video is present, namely the batch setting. As a result, shuffling

the data will result in i.i.d. samples. Control variates are an unbiased estimator for the

statistic of interest [69], so standard proofs of correctness apply to control variates.

Query rewriting using specialized NNs will respect the requested error bound and con-

fidence level under the assumption of no model drift.

Time and sample complexity. BlazeIt must take cδ σ
2

ε2
samples from a random variable

with standard deviation σ (cδ is a constant that depends on the confidence level and the

given video). Denote the standard deviation of random sampling as σa and from control

variates as σc; the amortized cost of running a specialized NN on a single frame as ks and

of the object detection method as ko; the total number of frames as F .

Control variates are beneficial when ksF < ko
cδ
ε2

(σ2a − σ2c). Thus, as the error bound

decreases or the difference in variances increases (which typically happens when specialized

NNs are more accurate or when σa is large), control variates give larger speedups.

While σa and σc depend on the query, we empirically show in Section 3.4.6 that control

variates and query rewriting are beneficial.

3.4.5 Optimizing Limit Queries

Overview. In cardinality-limited queries, the user is interested in finding a limited number

of events, (e.g., 10 events of a bus and five cars), typically for manual inspection. Limit

queries are especially helpful for rare events. To answer these queries, BlazeIt could

perform object detection over every frame to search for the events. However, if the events

occurs infrequently, naive methods of random sampling or sequential scans of the video can

be prohibitively slow (e.g., at 30 fps, an event that occurs once every 30 minutes corresponds

to a rate of 1.9× 10−5).

Our key intuition is to bias the search towards frames that likely contain the event. We

use specialized NNs for biased sampling, in a similar vein to techniques from the rare-event

simulation literature [90]. As an example of rare-event simulation, consider the probability

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 77

of flipping 80 heads out of 100 coin flips. Using a fair coin, the probability of encountering

this event is astronomically low (rate of 5.6 × 10−10), but using a biased coin with p = 0.8

can be orders of magnitude more efficient (rate of 1.2× 10−4) [90].

Physical operator and selection. BlazeIt currently supports limit queries searching

for at least N of an object class (e.g., at least one bus and at least five cars). In BlazeIt,

we use specialized NNs to bias which frames to sample:

• If there are no instances of the query in the training set, BlazeIt will default to

performing the object detection method over every frame and applying applicable

filters as in prior work [94] (random sampling is also possible).

• If there are examples, BlazeIt will train a specialized NN to recognize frames that

satisfy the query.

• BlazeIt rank orders the unseen data by the confidence from the specialized NN.

• BlazeIt will perform object detection in the rank order until the requested number

of events is found.

BlazeIt trains a specialized NN to recognize frames that satisfy the query. The training

data for the specialized NN is generated in the same way for aggregation queries (Section

3.4.4). While we could train a specialized NN as a binary classifier of the frames that

satisfy the predicate and that do not, we have found that rare queries have extreme class

imbalance. Thus, we train the specialized NN to predict counts instead, which alleviates

the class imbalance issue; this procedure has the additional benefit of allowing the trained

specialized NN to be reused for other queries such as aggregation. For example, suppose the

user wants to find frames with at least one bus and at least five cars. Then, BlazeIt trains

a single specialized NN to separately count buses and cars. BlazeIt use the sum of the

probability of the frame having at least one bus and at least five cars as its signal. BlazeIt

takes the most confident frames until the requested number of frames is found.

In the case of multiple object classes, BlazeIt trains a single NN to predict each object

class separately (e.g., instead of jointly predicting “car" and “bus", the specialized NN would

return a separate confidence for “car" and “bus"), as this results in fewer weights and typically

higher performance.

After the results are sorted, the full object detector is applied until the requested number

of events is found or all the frames are searched. If the query contains the GAP keyword,

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 78

once an event is found, the surrounding GAP frames are ignored.

Limit queries with multiple predicates. As with aggregation queries, a user might

issue a limit query with predicates. If there is sufficient training data in the TMAS, BlazeIt

can execute the procedure above. If there is not sufficient training data, BlazeIt will train

a specialized NN to search for the most selective set of predicates that contains enough data

in a similar fashion to generating an aggregation specialized NN.

Correctness. BlazeIt performs object detection on all sampled frames, so it always

returns an exact answer. All frames will be exhaustively searched if there are fewer events

than the number requested, which will also be exact.

Time complexity. Denote K to be the number of events the user requested, N the total

number of matching events, and F the total number of frames in the video. We denote, for

event i, fi as the frame where the event occurred. Once an event is found, the GAP frames

around the event can be ignored, but this is negligible in practice so we ignore it in the

analysis.

If K > N , then every method must consider every frame in the video, i.e., F frames.

From here on, we assume K ≤ N . For sequential scans, fK frames must be examined. For

random sampling, consider the number of frames to find a single event. In expectation,

random sampling will consider F
N frames. Under the assumption that K � N � F , then

random sampling will consider approximately K·F
N frames.

While using specialized NNs to bias the search does not guarantee faster runtime, we

show in Section 3.4.6 that it empirically can reduce the number of frames considered.

3.4.6 Evaluation

We evaluated BlazeIt on a variety of aggregation and limit FrameQL queries on real-world

video streams.

Experimental Setup

Evaluation queries and videos. We evaluated BlazeIt on six videos shown in Ta-

ble 3.10, which were scraped from YouTube. taipei, night-street, amsterdam, and archie

are widely used in video analytics systems [30, 83, 86, 94, 181] and we collected two other

streams. We only considered times where the object detection method can perform well

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 79

Table 3.10: Video streams and object labels queried in our evaluation.

Video name Object Occupancy Avg. duration
of object

Distinct
count Resol. FPS # Eval

frames Length (hrs) Detection
method Thresh

taipei bus 11.9% 2.82s 1749 720p 30 1188k 33 FGFA 0.2
car 64.4% 1.43s 32367

night-street car 28.1% 3.94s 3191 720p 30 973k 27 Mask 0.8
rialto boat 89.9% 10.7s 5969 720p 30 866k 24 Mask 0.8
grand-canal boat 57.7% 9.50s 1849 1080p 60 1300k 18 Mask 0.8
amsterdam car 44.7% 7.88s 3096 720p 30 1188k 33 Mask 0.8
archie car 51.8% 0.30s 90088 2160p 30 1188k 33 Mask 0.8

(due to lighting conditions), which resulted in 6-11 hours of video per day. These datasets

vary in object class (car, bus, boat), occupancy (12% to 90%), and average duration of

object appearances (1.4s to 10.7s). For each webcam, we use three days of video: one day

for training labels, one day for threshold computation, and one day for testing, as in [94].

We evaluate on a variety of aggregation and limit queries, with the video and object

class changed.

Target object detection methods. For each video, we used a pretrained object detection

method as the target object detection method, as pretrained NNs do not require collecting

additional data or training: collecting data and training is difficult for non-experts. We

selected between Mask R-CNN [73] pretrained on MS-COCO [119], FGFA [190] pretrained

on ImageNet-Vid [153], and YOLOv2 [149] pretrained on MS-COCO.

We labeled part of each video using Mask R-CNN [73], FGFA [190], and YOLOv2 [149],

and manually selected the most accurate method for each video. Mask R-CNN and FGFA

are significantly more accurate than YOLOv2, so we did not select YOLOv2 for any video.

The chosen object detection method per video was used for all queries for that video.

In timing the naive baseline, we only included the GPU compute time and exclude the

time to process the video and convert tuples to FrameQL format, as object detection is

the overwhelming computational cost.

Evaluation metrics. We computed all accuracy metrics with respect to the object detec-

tion method, i.e., we treated the object detection method as ground truth. For aggregation

queries, we report the absolute error. For limit queries, we guarantee only true positives are

returned, thus we only report throughput.

We have found that modern object detection methods can be accurate at the frame level.

Thus, we considered accuracy at the frame level, in contrast to to the one-second binning

that is used in [94] to mitigate label flickering for NoScope.

We measured throughput by timing the complete end-to-end system excluding the time

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 80

taken to decode video, as is standard [94, 124]. We assume the TMAS is computed offline

once, so we excluded the time to generate the TMAS. Unlike in [94], we also show runtime

numbers when the training time of the specialized NN is included. We include this time as

BlazeIt focuses on exploratory queries, whereas NoScope focuses on long-running streams

of data. We additionally show numbers where the training time is excluded, which could be

achieved if the specialized NNs were indexed ahead of time.

Hardware environment. We performed our experiments on a server with a single

NVIDIA Tesla P100 GPU and two Intel Xeon E5-2690v4 CPUs (56 threads). The system

has 504 GB of RAM.

Binary oracle configuration. Many prior visual analytics systems answer binary clas-

sification queries, including NoScope, Tahoma, and probablistic predicates [83, 94, 124]

which are the closest systems to BlazeIt. These systems cannot directly answer queries in

the form of aggregate or limit queries for multiple instances of an object or objects.

As binary classification is not directly applicable to the tasks we consider, where relevant,

we compared against a binary oracle, a method that returns (on a frame-by-frame basis)

whether or not an object class is present in the scene. We assume the oracle is free to query.

Thus, this oracle is strictly more powerful—in terms of accuracy and speed—than existing

systems. We describe how the binary oracle can be used to answer each type of query.

Aggregates. Binary oracles cannot distinguish between one and several objects, so object

detection must be performed on every frame with an object to identify the individual objects.

Thus, counting cars in taipei would require performing object detection on 64.4% of the

frames, i.e., the occupancy rate.

Cardinality-limited queries. As above, a binary oracle can be used to filter frames that do

not contain the objects of interest. For example, if the query were searching for at least one

bus and at least five cars in taipei, a binary oracle can be used to remove frames that do

not have a bus and a car. Object detection will then be performed on the remaining frames

until the requested number of events is found.

Aggregate Queries

We evaluated BlazeIt on six aggregate queries across six videos. We ran five variants of

each query: 1) Naive: we performed object detection on every frame, 2)Binary oracle: we

performed object detection on every frame with the object class present, 3) Naive AQP:

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 81

103

105
Ru

nt
im

e
(s

) 1.0x 1.6x

384.6x
2369x5741x

a) taipei
1.0x

3.6x

493.1x
3295x8331x

b) night-street
1.0x 1.1x

225.8x

3179x
8588x

c) rialto

Naiv
e

Bina
ry

Orac
le AQ

P

(Naiv
e)

Blaz
eIt

Blaz
eIt

(no
 tra

in)

103

105

Ru
nt

im
e

(s
) 1.0x 1.7x

615.0x
3286x7707x

d) grand-canal

Naiv
e

Bina
ry

Orac
le AQ

P

(Naiv
e)

Blaz
eIt

Blaz
eIt

(no
 tra

in)

1.0x 2.2x

588.7x
3279x8421x

e) amsterdam

Figure 3.17: End-to-end runtime of aggregate queries where BlazeIt rewrote the query
with a specialized network, measured in seconds (log scale). BlazeIt outperforms all base-
lines. All queries targeted ε = 0.1.

we randomly sampled from the video, 4) BlazeIt: we used specialized NNs and control

variates for efficient sampling, and 5) BlazeIt (no train): we excluded the training time.

There are two qualitatively different execution modes: 1) where BlazeIt rewrites the

query using a specialized NN and 2) where BlazeIt samples using specialized NNs as control

variates (Section 3.4.4). We analyzed these cases separately.

Query rewriting via specialized NNs. We evaluated the runtime and accuracy of

specialized NNs when the query can be rewritten by using a specialized NN. We ran each

query with a target error rate of 0.1 and a confidence level of 95%. We show the average of

three runs. Query rewriting was unable to achieve this accuracy for archie.

As shown in Figure 3.17, BlazeIt can outperform naive AQP by up to 14× even when

including the training time and time to compute thresholds, which the binary oracle does

not include. The binary oracle baseline does not perform well when the video has many

objects of interest (e.g., rialto).

While specialized NNs do not provide error guarantees, we show that the absolute error

stays within the 0.1 for the given videos in Table 3.11. This shows that specialized NNs can

be used for query rewriting while respecting the user’s error bounds.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 82

Table 3.11: Average error of 3 runs of query-rewriting using a specialized NN for counting.
These videos stayed within ε = 0.1.

Video Name Error
taipei 0.043
night-street 0.022
rialto -0.031
grand-canal 0.081
amsterdam 0.050

Table 3.12: Estimated and true counts for specialized NNs run on two different days of
video. In parentheses are the day of video.

Video Pred (1) Actual (1) Pred (2) Actual (2)
taipei 0.86 0.85 1.21 1.17
night-street 0.76 0.84 0.40 0.38
rialto 2.25 2.15 2.34 2.37
grand-canal 0.95 0.99 0.87 0.81

104

105

Sa
m

pl
es

a) taipei
Naive
Control
variate

b) night-street

Sa
m

pl
es

c) rialto

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Error (absolute)

104

105

Sa
m

pl
es

d) grand-canal

0.01 0.02 0.03 0.04 0.05
Error (absolute)

e) amsterdam

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Error (absolute)

f) archie

Figure 3.18: Sample complexity of random sampling and BlazeIt with control variates.
Control variates via specialized NNs consistently outperforms standard random sampling.
Note the y-axis is on a log scale.

Sampling and control variates. We evaluated the runtime and accuracy of sampling

with specialized NNs as a control variate. Because of the high computational cost of running

object detection, we ran the object detection method once and recorded the results. The

run times in this section are estimated from the number of object detection invocations.

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 83

Table 3.13: Query details and number of instances for limit queries.

Video name Object Number Instances
taipei car 6 70
night-street car 5 29
rialto boat 7 51
grand-canal boat 5 23
amsterdam car 4 86
archie car 4 102

We targeted error rates of 0.01, 0.02, 0.03, 0.04, and 0.05 with a confidence level of 95%.

We averaged the number of samples for each error level over 100 runs.

Cardinality-limited Queries

We evaluated BlazeIt on limit queries, in which frames of interest are returned to the user,

up to the requested number of frames. We show in Table 3.13 the query details and the

number of instances of each query. If the user queries more than the maximum number

of instances, BlazeIt must inspect every frame. Thus, we chose queries with at least 10

instances of the query.

BlazeIt will only return true positives for limit queries (Section 3.4.5), thus we only

report the runtime. Additionally, if we suppose that the videos are indexed with the output

of the specialized NNs, we can simply query the frames using information from the index.

This scenario might occur when the user executed an aggregate query as above. Thus, we

additionally report sample complexity.

We ran the following variants: naive (object detection sequentially until the requested

number of frames is found), binary oracle (object detection over the frames containing the

object class(es) of interest until the requested number of frames is found), sampling (random

sampling the video until the requested number of events is found), BlazeIt, and BlazeIt

indexed.

Figure 3.19 shows that BlazeIt can achieve over a 1000× speedup compared to base-

lines. We see that the baselines do poorly in finding rare objects, where BlazeIt’s special-

ized NNs can serve as a high-fidelity signal.

We additional conducted experiments with varying the number of objects, searching

for objects with additional predicates, and multiple objects. For brevity, we defer these

experiments to Kang et al. [93].

CHAPTER 3. PROXY-BASED ALGORITHMS AND SYSTEMS 84

103

105

Ru
nt

im
e

(s
)

1.0x
1.9x

21.9x

233.4x
1022x

a) taipei

1.0x 1.3x

0.2x

8.7x 9.1x

b) night-street

Ru
nt

im
e

(s
) 1.0x 1.1x

43.4x
182.4x232.3x

c) rialto

Naiv
e

Bina
ry

Orac
le
Sa

mplin
g
Blaz

eIt

Blaz
eIt

(in
de

xed
)

103

105

Ru
nt

im
e

(s
) 1.0x 1.5x

5.5x
14.8x 15.3x

d) grand-canal

Naiv
e

Bina
ry

Orac
le
Sa

mplin
g
Blaz

eIt

Blaz
eIt

(in
de

xed
)

1.0x
3.9x

73.4x

441.2x779.8x

e) amsterdam

Naiv
e

Bina
ry

Orac
le
Sa

mplin
g
Blaz

eIt

Blaz
eIt

(in
de

xed
)

1.0x 1.9x

14.8x

255.6x
1229x

f) archie

Figure 3.19: End-to-end runtime of baselines and BlazeIt on limit queries; BlazeIt
outperforms all baselines. The y-axis is log-scaled. All queries looked for 10 events.

3.4.7 Discussion

In this section, we present BlazeIt, a optimizing video analytics system with a declara-

tive language, FrameQL. We introduce two novel optimizations for aggregation and limit

queries, which are not supported by prior work. These techniques can run orders of magni-

tude faster than baselines while retaining accuracy guarantees, despite potentially inaccurate

proxy models.

As we have shown in this Section, proxy-based methods can improve on a range of queries

with guarantees on accuracy. In the following Section, we describe how to generate these

proxies efficiently and execute end-to-end queries efficiently.

Chapter 4

Generating Proxy Scores Efficiently

As I described in Chapter 3, proxies can accelerate unstructured data queries by approxi-

mating expensive target models and combining them with sampling algorithms. However,

these methods require high quality proxies that are ideally generated efficiently.

In this chapter, we describe how to generate high-quality proxies efficiently. We first

describe a novel approach (TASTI) that uses embeddings to construct an index for proxy-

based queries. TASTI can generate proxy scores that can be simultaneously 10× cheaper

to construct and 24× more efficient at query time. We then describe our system Smol,

which addresses bottlenecks in end-to-end proxy generation. Smol can achieve up to 5.9×
improved throughput at a fixed accuracy by optimizing across all stages of proxy generation.

4.1 TASTI: Semantic Indexes for Unstructured Data

As we have described, recent work has proposed query-specific proxy models to approximate

high-quality target labelers to reduce query costs. Low-cost proxy models can be used

for selecting data records that match a predicate, aggregation queries, and limit queries

[11, 16, 83, 93–95, 124]. For each query, a proxy model is trained to generate proxy scores

for data records, in which the goal is to approximate the result of executing the target

labeler on that data record for the particular query. These scores are then used in various

algorithms depending on query type. For example, BlazeIt [93] will train a proxy model

to (approximately) count the number of cars per frame of a video to answer the car counting

query, and selection algorithms (e.g., NoScope [94], probabilistic predicates [124], SUPG

[95], and Tahoma [11]) will train a separate proxy model to (approximately) filter frames

85

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 86

with cars and bicycles for selecting such frames.

Unfortunately, methods based on query-specific proxy models have three key drawbacks.

First, obtaining large amounts of training data from the target labeler to train the proxy

models can be expensive. For example, BlazeIt and NoScope require hours of GPU

compute to execute the target labeler to produce labels to train the proxy models [93, 94]

and other systems require expensive human annotations [11, 83, 124]. Second, these systems

require new training procedures for each query type, which can be difficult to develop. Third,

query-specific proxy models cannot easily share computation across different queries or query

types. Thus, using proxy models can be challenging and computationally expensive.

We observe that this prior work ignores a key opportunity: redundancy present in the

target labeler outputs of many datasets. For example, two frames with visually distinct cars

in the bottom left would have the same result for many queries, e.g., counting the number

of cars or selecting cars in the bottom left. Namely, the structured outputs (i.e., target

labeler results) of many data records are semantically similar. While fully computing target

labeler outputs for all records is expensive, query processing systems would ideally use this

similarity to avoid repeated work and target labeler invocations.

To address these issues and leverage this opportunity, we propose TrAinable SemanTic

Indexes (TASTI). TASTI is an indexing method over unstructured data for accelerating

downstream proxy score-based query processing methods via embeddings (i.e., vectors in

Rn). Given the target labeler and a user-provided closeness function over target labeler

outputs, TASTI produces embeddings for each unstructured data record (e.g., frame of

video), with the desideratum that close records have close embeddings. TASTI’s required

closeness function is often easy to specify, e.g., that frames of a video with similar object

types and object positions are close (Section 4.1.2).1 TASTI then uses the embeddings and

a small set of records annotated by the target labeler to answer downstream queries.

Specifically, we propose a method of using TASTI’s embeddings and the labeled records

(i.e., cluster representatives) to generate proxy scores automatically, including for proxy-

based aggregation, selection, and limit query processing algorithms (Section 4.1.3) [11, 93–

95, 124]. TASTI generates per-record proxy scores by propagating annotations from the

cluster representatives to the unlabeled records. For example, we could assign an unanno-

tated frame the number of cars in the closest cluster representative for counting cars. These
1TASTI can also be used without training an embedding by using pre-trained embeddings, although

query performance will generally be better with its training method.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 87

scores can then used in query processing algorithms, such as those in BlazeIt, probabilis-

tic predicates, Tahoma, etc. Moreover, as the target labeler is executed over more data

during query processing, we can incrementally improve TASTI’s clustering, which improves

performance (i.e., TASTI’s indexes support “cracking” [85]).

To understand TASTI’s performance, we provide a theoretical analysis of TASTI and

downstream query accuracy (Section 4.1.4). We prove that queries that are Lipschitz-

continuous functions of the data will achieve exact results when using TASTI (with suffi-

ciently dense clustering) under 0 training loss, and quantitative bounds when the training loss

is not 0. Although our assumptions are strong, our analysis provides statistically grounded

intuition for why TASTI can outperform baselines. We validate our intuition with extensive

experiments (Section 4.1.5).

We implemented TASTI in a prototype system and evaluated it on four datasets, in-

cluding widely studied video datasets [30, 86, 93, 95, 181], a text dataset [188], and a speech

dataset [12]. We integrated TASTI into query processing algorithms for aggregation, selec-

tion, and limit queries and executed these queries over the datasets. We show that TASTI’s

indexes require up to 10× fewer labels from the target labeler to construct than generat-

ing training data for per-query proxy model methods, as TASTI leverages redundancy in

the datasets. Furthermore, TASTI outperforms on query runtime across all queries and

datasets we evaluate on by up to 24× over previous optimized systems.

In the remainder of this section, we give further context on proxy-based query processing,

describe TASTI’s system architecture, index construction, and query processing, provide a

theoretical analysis of TASTI, and evaluate TASTI on real-world datasets.

4.1.1 Overview and Example

Background and Problem

We first describe how target labelers and proxy scores are used in analytics systems before

describing an overview of TASTI.

Many analytics applications over unstructured data are powered by expensive DNNs that

extract structured data from these unstructured sources or human labelers (e.g., ground-

truth annotations for studying social or life sciences [96]). We refer to these expensive

DNNs and human labelers as target labelers. These target labelers induce a schema over

the extracted data. For example, object detection DNNs can extract information about

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 88

object types and positions from frames of a video. The schema would contain columns for

object type, object (x, y)-positions, and timestamps. Unfortunately these high-quality target

labelers, such as Mask R-CNN or BERT, can be expensive and dominate query execution

costs.

Thus, recent work attempts to accelerate queries with target labelers by using proxy

scores (e.g., BlazeIt, NoScope, probabilistic predicates, Tahoma, SUPG, etc.). The

most common method of producing proxy scores is to train a smaller DNN (also called a

“specialized NN” or “proxy model”) that will produce a proxy score per data record. These

proxy models are typically trained to approximate the output of the target labeler for the

query at hand, e.g., a count for an aggregation query, and can yield substantial query

speedups. Constructing the training data can be expensive as the training data must reflect

a wide range of potential queries.

We describe two examples of using proxy scores to accelerate queries, both of which train

a new proxy model per query. In both cases (and more generally), the goal is to generate

proxy scores that are highly correlated with the target labeler outputs: these algorithms will

adaptively improve with better proxy scores.

Approximate aggregation. Suppose the user issues a query for the average number of cars

per frame in a video, as studied by BlazeIt [93]. BlazeIt takes as input an error target

and proxy scores.

To optimize this query, BlazeIt trains a cheap proxy model whose output is the pre-

dicted number of cars per frame using a sample of frames annotated by the target labeler.

This proxy model is then used to generate a query-specific proxy score per frame. BlazeIt

then uses these scores as a “control variate” [69] to reduce the variance in estimation. Proxy

scores that are more correlated with the true count will result in faster query execution.

Approximate selection. Suppose the user issues a query to select 90% of frames with

cars with 95% probability of success, as studied by the “recall target” setting in SUPG [95].

Specifically, SUPG takes as input a target recall and (in contrast to BlazeIt) a fixed target

labeler budget. SUPG will train a proxy model that estimate the probability of a record

matching a predicate.

Given proxy scores, SUPG will use importance sampling and return a set of records

achieving the recall target. Other recent proxy-based systems accelerate selection queries

without guarantees [11, 16, 83, 124].

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 89

Target DNN

Unstructured Data

Training Data
Sampling

Triplet Dataset

Embedding DNN
(Triplet Trained)

Positive Negative

(a) Overview of TASTI’s procedure for train-
ing embeddings. Training data is selected via
the induced schema and a pre-trained embed-
ding DNN. This data is then used to train an
embedding DNN via the closeness function pro-
vided by the user.

Target DNN

Unstructured Data

Embedding DNN
(Triplet Trained)

Embeddings TASTI
Embeddings
Distances

Cluster
Representatives

(b) Overview of TASTI’s index construction
procedure. TASTI computes per-record embed-
dings, selects sample records to annotate (clus-
ter representatives), and computes embedding
distances from the unannotated records to the
cluster representatives. TASTI stores the tar-
get labeler results, distances, and embeddings as
its index.

Target DNNTASTI

time

of
 c
ar
s

true
predSELECT COUNT(*)

FROM VIDEO
WHERE CLASS=’CAR’
ERROR WITHIN 0.01

Query

How many cars are in the video?

Proxy Scores
[4.2, ... , 2.8]
(units in cars)

4129513 Cars

Answer
Query ProcessingQuery-specificPropagation

(c) Overview of TASTI’s query processing. Given a query, TASTI will compute exact results
on the cluster representatives. It will then produce proxy scores on unannotated records by
propagating the exact scores via embedding distance. These scores can then be used in existing
downstream query processing algorithms based on proxy scores.

Figure 4.1: TASTI system overview.

TASTI’s Inputs, Outputs, and Goals

Overview. As input, TASTI takes a target labeler, an induced schema, a target labeler

invocation budget for index construction, a closeness function over the induced schema, and

a parameter k that specifies how many distances to store for reach record. The primary cost

in index construction are the target labeler invocations. TASTI will produce an embedding-

based index subject to the budget that can produce proxy scores for a range of queries.

TASTI’s primary goal is to produce high quality proxy scores for query processing

algorithms, as with per-query proxy models, but without training a new model per query.

Supported queries. We demonstrate how to generate proxy scores for selection queries,

aggregation queries, and limit queries [11, 93–95, 124] with TASTI. TASTI can be used

with other queries requiring proxy scores. Since the initial draft, other work has used TASTI

to support aggregation queries with predicates [96].

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 90

Example

Consider constructing an index for visual data, in which queries over object types and posi-

tions are issued. In this case, the target labeler (e.g., Mask R-CNN) takes an unstructured

frame of video and returns a structured set of records that contains fields about the po-

sitions and types of objects in the frame. Consider two queries, one of which counts the

number of cars per frame (aggregation query as supported by BlazeIt) and one that se-

lects frames with cars (selection query as supported by NoScope, probabilistic predicates,

SUPG, etc.). To understand how the index construction procedure and query processing

works, we describe the intuition below.

Index construction. TASTI builds its index by training an embedding DNN for the

input data and then clustering results based on it. Ideally, semantically similar records are

grouped together, e.g., all frames with two cars might form one cluster, all frames with one

bike and one car might form a cluster, etc.

To train an embedding DNN, TASTI requires a heuristic for “close” and “far” target

labeler outputs, either as a Boolean function or as a cutoff based on a continuous distance

measure. One such heuristic for our video application is to group frames with the same

number of objects and similar positions together. The grouping of “close” frames can be

specified in pseudocode as follows:

def is_close(frame1: List[Box], frame2: List[Box])->bool:
if len(frame1) != len(frame2):

return False
return all_boxes_close(frame1 , frame2)

where all_boxes_close is a helper function that returns true if all boxes in frame1 have

a corresponding “close” box in frame2. Given the closeness function, TASTI trains a low-

cost embedding DNN via the triplet loss [176], which separates “far” frames. Then, TASTI

computes embeddings over all frames of the video with the embedding DNN and select a

set of frames to annotate with the target labeler. It will then store the target labeler’s

outputs (object types and positions) for each cluster representative. TASTI uses the cluster

representatives and distances from unannotated frames’ embeddings for downstream query

processing.

Query processing. TASTI can now be used to produce proxy scores for a range of

downstream queries using existing proxy-based algorithms. First, TASTI generates exact

scores on cluster representatives, e.g., the exact count of the number of cars from the cached

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 91

target labeler outputs. Then, TASTI propagates these scores to the remainder of the

records, e.g., producing approximate counts for the unannotated records. We describe the

intuition behind two example queries: in both of these examples, TASTI need not train a

new proxy model per query and can reuse its index.

Approximate aggregation. Consider the query of counting the average number of cars per

frame. TASTI computes the query-specific proxy score as the distance-weighted average

of the number of cars in the k closest annotated frames (see Section 4.1.3 for pseudocode).

This will produce an estimate of the number of cars in a given unannotated frame. These

scores can then be used by BlazeIt’s query processing algorithm [93].

Approximate selection. To estimate the probability of matching the predicate (i.e., query-

specific proxy score) for SUPG, TASTI will compute the weighted average as above, except

that annotated frames that contain a car receive a score of 1 and annotated frames that do

not contain a car receive a score of 0. These scores can then be used by SUPG’s selection

algorithm [95].

We now discuss TASTI’s index construction method (Section 4.1.2) and TASTI’s query

processing method (Section 4.1.3).

4.1.2 Index Construction

We describe how TASTI constructs indexes, which can be used to produce high quality

proxy scores without the use of query-specific proxy models. Many queries only require a low

dimensional representation of data records to answer, such as object types and positions (as

opposed to raw pixels in a video). Furthermore, in many applications, this low dimensional

representation has a natural closeness function, which can be directly used to construct

high quality proxy scores. TASTI attempts to construct representations that reflect these

heuristics by grouping close records and separating far records.

We show a schematic of the training in Figure 4.1a, the index construction in Figure 4.1b,

and the overall algorithm in Algorithm 9. TASTI’s index construction procedure consists of

optionally training an embedding DNN via the triplet loss, producing embeddings per record,

selecting cluster representatives, and computing statistics over the cluster representatives.

Throughout, we use the furthest point first (FPF) clustering algorithm [62]. FPF it-

eratively chooses the furthest point from the existing cluster representatives as the new

representative. FPF performs well in practice, is computationally efficient, and provides a

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 92

Algorithm 9 Pseudocode for TASTI’s index construction procedure. Given a dataset
X, training points N1, number of cluster representatives N2, and min-k to retain, TASTI
will construct the index as follows. FPF is the furthest point first algorithm, where the
arguments are the embeddings and the number of points to select.
function Make TASTI index(X, N1, N2, k)

PretrainedEmbeddings[i] ← PretrainedModel(X[i])
TrainingPoints ← FPF(PretrainedEmbeddings, N1)
TripletModel ← Finetune(TrainingPoints, PretrainedModel)
Embeddings[i] ← TripletModel(X[i])
ClusterRepresentatives ← FPF(Embeddings, N2)
MinKDistances[i] ← ClosestKDistances(X[i], ClusterRepresentatives, k)
return ClusterRepresentatives, MinKDistances

2-approximation to the optimal maximum intra-cluster distance (which our analysis uses).

Training the Embeddings

TASTI optionally trains a mapping between data records (e.g., frames of a video) and

semantic embeddings. The semantic embeddings have the desideratum that data records

that have similar extracted attributes are close in embedding space, and vice versa for records

that have dissimilar extracted attributes. For example, consider queries over object type

and position. A frame with a single car in the upper left should be close to another frame

with a single car in the upper left, but far from a frame with two cars in the bottom right.

We describe our training method via domain-specific triplet losses and show a schematic

in Figure 4.1a. We note that TASTI’s training procedure is optional: pre-trained embed-

dings can be also be used for the index if training is expensive.

Domain-specific triplet loss. To train the embedding DNN, TASTI uses the triplet

loss [176]. The triplet loss takes an anchor point, a positive example (i.e., a close example),

and a negative example (i.e., a far example). It penalizes examples where the anchor point

and the positive point are further apart than the anchor point and the negative point (see

Section 4.1.4).

A key choice in using the triplet loss is selecting points that are “close” and those that are

“far.” This choice is application specific, but many applications have natural choices. For

example, any frame of video with different numbers of objects may be far (see Section 4.1.1

for pseudocode). Furthermore, frames with the same number of objects, but where the

objects are far apart may also considered far.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 93

Training data selection (FPF mining). Training via the triplet loss requires invocations

of the target labeler to determine whether pairs of records are close or not. Due to the cost

of the target labeler, TASTI must sample records to be selected for training; we assume the

user provides a budget of target labeler invocations. While TASTI could randomly sample

data points, randomly sampled points may mostly sample redundant records (e.g., majority

of empty frames) and miss rare events. We empirically show that randomly sampling training

data results in embeddings that perform well on average, but can perform poorly on rare

events (Section 4.1.5).

To produce embeddings that perform well across queries, we would ideally sample a

diverse set of data records. For example, suppose 80% of a video were empty: selecting

frames at random would mostly sample empty frames. Selecting frames with a variety of

car numbers and positions would be more sample efficient.

When available, TASTI uses a pre-trained DNN to select such diverse points. These

pre-trained DNNs are widely available, e.g., DNNs pre-trained on ImageNet [74] or on large

text corpora (BERT) [48]. Pre-trained DNNs produce embeddings that are semantically

meaningful, although not adapted to the specific induced schema.

To produce training data that results in embeddings that perform well on rare events,

TASTI performs the following selection procedure. First, TASTI uses a pre-trained DNN

to generate embeddings over the data records. Then, TASTI executes the FPF algorithm to

select the training data. TASTI constructs triplets from the training data via target labeler

annotations. TASTI will first bucket records by the closeness function. To construct a

triplet, TASTI will sample two different buckets at random: it will select the anchor and

positive record at random from the first bucket and a negative record at random from the

second bucket.

Clustering

TASTI produces clusters via the embedding DNN. As we describe in Section 4.1.3, TASTI

propagates annotations/scores from cluster representatives to unannotated data records.

A key choice is which data records to select as cluster representatives. Similar to selecting

training data, TASTI could select a set of cluster representatives at random. While random

sampling may do well on average at query time, it may perform poorly on rare events (i.e.,

outliers).

To address this issue, TASTI selects cluster representatives via FPF. FPF chooses points

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 94

that are far apart in embedding space. Thus, if the embeddings are semantically meaningful,

then FPF will select data records that are diverse. Finally, we mix a small fraction of random

clusters, which helps “average-case performance” queries.

TASTI stores the distances of all embeddings to each cluster representative. As we

describe in Section 4.1.3, TASTI uses the k nearest cluster representatives for query pro-

cessing.

Cracking TASTI Indexes

In contrast to prior work, which can only share work between queries in an ad-hoc manner,

TASTI’s proxy scores will improve as queries are executed. In particular, when any query

executes the target labeler on a data record, TASTI can cache the target labeler result.

The records over which the target labeler are executed can then be added as new cluster

representatives. Computing the distance to the new cluster representative is computationally

efficient and trivially parallelizable. We note that this is a form of “cracking” [85].

Computational Performance

Suppose there are N data records, D dimensions, L training iterations, and a total target

labeler budget of C. Denote the costs of the target labeler, embedding DNN, and distance

computation as cT , cE , and cD respectively. The total cost of index construction is O(C ·
cT + L · cE + N · cE + NCD · cD) assuming the cost of a training iteration is proportional

to the cost of the forward pass [91].

The ratio of these steps depends on the relative computational costs. In many appli-

cations, the cost of embedding is less expensive than the cost of the target labeler. For

example, Mask R-CNN can execute as slow as at 3 fps, compared to an embedding DNN

which executes at 12,000 fps [99]. Furthermore, human labelers are orders of magnitude

more expensive than embedding DNNs (up to 100,000× more expensive).

4.1.3 Query Processing with TASTI

How can TASTI indexes accelerate query processing? We propose automatic methods

of construct query-specific proxy scores with TASTI, which can then be passed to existing

proxy score-based algorithms. These query-specific proxy scores are an approximation of the

result of executing the target labeler on the data records for the particular query. Consider

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 95

an aggregation query counting the average number of cars per frame [93]. The query-specific

proxy scores would be an estimate of the number of cars in a given frame.

Many downstream query processing algorithms only require proxy scores and the target

labeler. For example, selection without guarantees (e.g., binary detection) [11, 94, 124],

selection with statistical guarantees [95], aggregation [93], and limit queries [93] only require

query-specific proxy scores and the target labeler.

TASTI provides a default method of taking the target labeler output and producing a

numeric score, which can support aggregation, selection and limit queries. Its default method

produces exact scores on the cluster representatives and propagates using the distance-

weighted average for numeric columns and distance-weighted majority vote for categorical

columns. If desired, a developer may also implement custom functions to produce proxy

scores for other queries. We describe several examples of how proxy scores can be computed

and used for common query types, and then describe the interface for implementing custom

proxy scores. We show a schematic of the query processing procedure in Figure 4.1c.

Query Processing Examples

We provide examples of the query-specific scoring functions, score propagation, and down-

stream query processing for several classes of queries below.

Approximate aggregation. Consider the example of counting the average number of cars

per frame, as studied by BlazeIt [93]. The scoring function would take the detected boxes

in a frame and return the count of the boxes matching “car,” as shown above. For k = 1, the

query-specific proxy score would be the count for the nearest cluster representative and for

k > 1, it would be the distanced-weighted mean count of the nearest k cluster representatives

for a given frame.

The query-specific proxy scores can be used to answer the query with statistical error

bounds, e.g., used as a control variate by the BlazeIt’s query processing algorithm. The

scores could also be used to directly answer the query.

Selection. Consider a query that selects all frames of a video with a car, as studied by

prior work [11, 94, 95, 124]. The scoring function would take the detected boxes in a frame

and return 0 if there are no cars and 1 if there is a car in the frame. The query-specific

proxy score can be smoothed for k > 1.

The query-specific proxy scores can be used as input to SUPG, in which sampling is

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 96

used to achieve statistical guarantees on the recall or precision of selected records [95].

These scores can also be used directly to answer the query (i.e., return the records with

value above some threshold, either ad-hoc or computed over some validation set), as other

systems do [11, 94, 124].

Limit queries. Consider a query that selects 10 frames containing at least 5 cars [93].

Such queries are often used to manually study rare events. In this case, the scoring function

and query-specific proxy scores would be the same as for aggregation. For limit queries, we

generally recommend using k = 1, since this query is typically focused on ranking rare events.

The query processing algorithm will examine frames with the target labeler as ordered by

the query-specific proxy scores. The algorithm will terminate once the requested number of

frames is found.

Custom Proxy Scores

TASTI has built-in functionality to compute and propagate scores for selection, aggregation

and limit queries using the methods described in the previous section. In addition, developers

may specify custom scores to extend TASTI to supporting other queries.

The API for specifying scoring functions is as follows. Denote the type of the output of

the target labeler as TargetLabelerutput (e.g., a list of bounding boxes) and the type of

the score as ScoreType (e.g., a float). Using Python typing, the developer would implement:

def Score(target_output: TargetLabelerOutput) -> ScoreType

These functions can be implemented in few lines of code. We show the pseudocode for the

example above:

def CountCarScore(boxes: Sequence[Boxes]) -> int:
return len([box for box in boxes if box.object_type == ’car’])

Other queries, e.g., over object positions, can be implemented similarly with few lines of

code.

Score Propagation

Given the query-specific scoring functions, TASTI will execute the scoring functions on the

cluster representatives (as the target labeler outputs are available for these data records). In

order to execute downstream query processing, TASTI must also materialize approximate

scores for the remainder of the data records.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 97

To produce these query-specific proxy scores, TASTI will propagate scores from the

cluster representatives to the unannotated records. The score for each data record will

be the inverse distance-weighted mean of the nearest k cluster representatives for numeric

scores. For categorical scores, TASTI will take the distance-weighted majority vote. Since

the distances to cluster representatives are cached, this process is computationally efficient.

A developer may also implement a custom method of propagating scores. We show an

example of such a method in Section 4.1.5 for limit queries.

4.1.4 Theoretical Analysis

We present a statistical performance analysis of our methods to better understand resulting

query quality. Intuitively, if the original data records have a metric structure and the triplet

loss recovers this structure, we expect downstream queries to behave well. Specifically, we

provide guarantees on query quality (typically accuracy) when using TASTI directly. We

show that accuracy for a natural class of “smooth” queries is directly connected to the triplet

loss and the density of clustering. While the assumptions in our analysis may not hold in

practice, we conduct our analysis to provide statistically grounded intuition for why TASTI

can outperform baseline methods. We validate our intuition with extensive experiments

(Section 4.1.5).

We formalize this intuition by analyzing how downstream queries behave under the triplet

loss. We specifically analyze the case where k = 1, i.e., using a single cluster representative

in query processing.

Notation and Preliminaries

Notation. We define the set of data records as D := {x1, ..., xN}, the scoring function

f(xi) : D → R, and the embedding function φ(xi) : D → Rd. Denote the cluster representa-

tives as R := {xr : r ∈ R} ⊂ D for some set R ⊂ {1, ..., N}. Given this set, we denote the

representative mapping function as c(xi) : D → R, which maps a data record to the nearest

cluster representative, and the query-specific scores as f̂(x) := f(c(x)).

Suppose there is a query-specific loss function `Q(xi, yi) : D × R → R where yi ∈ R is

the predicted label. `Q will be used to evaluate the quality of f and f̂ as `Q(x, f(x)) and

`Q(x, f̂(x)).

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 98

We define the per-example triplet loss as

`T (xa, xp, xn;φ,m) := max(0,m+ |φ(xa)− φ(xp)| − |φ(xa)− φ(xn)|)

where we omit φ and m where clear. Define the ball of radius M as BM (x) = {x′ :

d(x, x′) < M} and its complement B̄M . For random variables xa ∼ D, xp ∼ BM (xa), and

xn ∼ B̄M (xa) drawn uniformly from the sets, we define the population triplet loss as

L(φ;M,m) := Exa,xp,xn [`T (xa, xp, xn;φ,m)] (4.1)

for some margin m > 0.

Assumptions and properties. We make the following assumptions. We first assume

that there is a metric d(xi, xj) on D and that D is compact with metric d. We further

assume that `Q(x, y) is Lipshitz in x and y with constant KQ/2, in both arguments.

For both of our proofs, we assume the triplet loss is low and the cluster representatives

are dense enough under φ. Low triplet loss controls the quality of the embeddings with

respect to the original metric d. The density of the cluster representatives controls how

close the unannotated records are from the cluster representatives in the original space.

Example. Consider the video setting described in Section 4.1.1. D is the set of frames,

φ is the trained embedding DNN, and we use the metric induced by closeness function also

described in Section 4.1.1. Consider the two queries: aggregation queries for the number of

cars and selecting frames of cars. For the aggregation query, f maps frames to the number

of cars. For the selection query, f maps frames with cars to 1 and frames without cars to 0.

Theorem Statements

We defer all proofs to Kang et al. [97].

Zero loss case. To theoretically analyze our index and query processing algorithms,

we first consider the case where the embedding achieves zero triplet loss (we generalize to

non-zero loss below). We show the following positive result: using the query-specific proxy

scores in this setting will achieve bounded loss. In fact, for `Q that are identically 0 (e.g.,

for the example above), TASTI will achieve exact results.

We now state the main theorem for the zero-loss case.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 99

Theorem 3 (Zero loss). Let φ be an embedding that achieves L(φ;M,m) = 0 and c be

such that maxx∈D |φ(x)− φ(c(x))| < m. Then, the query procedure will suffer an expected

loss gap of at most

E[`Q(x, f̂(x))] ≤ E[`Q(x, f(x))] +M ·KQ. (4.2)

Generalization to Non-zero Loss. We generalize our analysis to the non-zero loss case

below. We show that the loss in queries is bounded by the triplet loss and several other

natural quantities.

Theorem 4 (Non-zero loss). Consider an embedding φ that achieves L(φ;M,m) = α and
a clustering c such that maxx∈D |φ(x) − φ(c(x))| < m. Assume that the query loss `Q is
upper bounded by C. Then, query procedure will suffer an expected loss gap of at most

E[`Q(x, f̂(x))] ≤ E[`Q(x, f(x))] +M ·KQ +
C supx |B̄M (x)|

m
α. (4.3)

Discussion

We have shown that many classes of queries will have bounded loss (i.e., discrepancy from

exact answers). However, we note that our analysis has several limitations. First, TASTI

uses the nearest k = 5 cluster representatives to generate the query-specific proxy scores by

default, not k = 1 as used in our analysis. Second, the triplet loss may be large in practice.

Third, not all queries admit Lipschitz losses. Nonetheless, we believe our analysis provides

intuition for why TASTI outperforms even recent state-of-the-art. We defer a more detailed

analysis to future work.

4.1.5 Evaluation

We evaluated TASTI on five real world datasets with three query types. We demonstrate

that TASTI’s index construction is cheaper than recent state-of-the-art executed end-to-end

and that TASTI’s proxy scores outperforms per-query proxies on all settings we consider.

We defer extended experiments to Kang et al. [97]. Our code is available at https://

github.com/stanford-futuredata/tasti.

https://github.com/stanford-futuredata/tasti
https://github.com/stanford-futuredata/tasti

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 100

Experimental Setup

Datasets, target labelers, and triplet loss. We considered three video datasets, a text

dataset, and a speech dataset. We used the night-street, taipei, and amsterdam videos

[93]. The night-street dataset is widely used in video analytics evaluations [30, 93, 94,

181]. The taipei dataset has two object classes (car and bus) and we use the same set of

embeddings for both. We used Mask R-CNN as the target labeler and ResNet-18 as our

embedding DNN. The closeness function separates frames with objects that are far apart

and frames with different numbers of objects (when also considering object types).

For the text dataset, we used a semantic parsing dataset [188]. The dataset consists of

pairs of natural language questions and corresponding SQL statements. We assumed the

SQL statements are not known at query time and must be annotated by crowd workers (i.e.,

that crowd workers are the target labeler). We used BERT [48] for the embedding DNN.

We considered queries over SQL operators and number of predicates. The closeness function

separates questions over different SQL operators and number of predicates.

For the speech dataset, we used the Common Voice dataset [12]. The dataset consists

of short speech snippets. We assumed that the attributes of speaker gender and age are not

known at query time and must be annotated by crowd workers. We used an audio ResNet-

22 [108] for the embedding DNN. The closeness function separates records by gender and

discretized age bucket.

Queries and metrics. We evaluated TASTI and per-query proxies on three classes of

queries using three recently proposed algorithms: aggregation, selection, and limit queries.

Our primary cost metric across all queries is the number of target labeler invocations

and also report end-to-end costs for certain experiments. We use target labeler invocations

as the primary metric for several reasons. First, in many cases, the target labeler is actually

a human labeler, particularly when used in social or life sciences [96]. Second, the target

labelers we evaluate are thousands to hundreds of times more expensive than query process-

ing costs and proxy models [99], and thus make up the majority of query costs. In addition,

this strictly benefits systems that use per-query proxies which must be executed at query

time: TASTI does not train a model per query.

Aggregation. For aggregation queries, we queried for an approximate statistic of the target

labeler executed on the unstructured data records. We computed the average number of

objects per frame for the video datasets, the average number of predicates per query for the

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 101

WikiSQL dataset, and the fraction of male speakers in the Common Voice dataset.

For all settings, we used the EBS sampling as used by the BlazeIt system [93], which

provides guarantees on error. EBS sampling uses the proxy scores to guide target labeler

sampling. Better proxy scores will result in fewer target labeler invocations. As such, we

measured the number of target labeler invocations (lower is better).

We additionally compare TASTI to approximate aggregation without statistical guar-

antees, which uses the proxy scores to answer queries directly (as used by BlazeIt).

Selection. For selection queries, we executed approximate selection queries with recall

targets (SUPG queries [95]). We selected for frames with objects for video datasets, natural

language questions that are parsed into selection SQL statements for the WikiSQL dataset,

and male speakers in the Common Voice dataset.

Given a target labeler budget, these queries return a set of records matching a predicate

with a given recall target with a given confidence level (e.g., “return 90% of instances of

cars with 95% probability of success”): these queries are useful in scientific applications or

mission-critical settings [95]. In contrast to queries that do not provide statistical guarantees,

SUPG guarantees the recall target with high probability. Since recall SUPG queries fix the

number of target labeler invocations, we measured the false positive rate (lower is better).

We additionally compare TASTI to approximate selection without statistical guaran-

tees, which uses the proxy scores to answer queries directly. We slightly modify the query

processing algorithms of NoScope, Tahoma, and probabilistic predicates to directly use

proxy scores and use the accuracy metric of F1 score.

Limit. For limit queries, we used the ranking algorithm proposed by Kang et al. [93]. This

ranking algorithm examines data records that are likely to match the predicate of interest in

descending order by the proxy score. Proxy scores that have high recall for given number of

records will perform better. As such, we measured the number of target labeler invocations

(lower is better).

Methods evaluated. We used the query processing methods above and use the per-

query proxies as used in Kang et al. [93] (aggregation and limit queries) and Kang et al.

[95] (selection queries). We use the exact proxy models for the video datasets (a “tiny

ResNet”), logistic regression over FastText embeddings [23] for the WikiSQL dataset, and a

smaller CNN (CNN-10) [108] for the Common Voice dataset. FastText embeddings are less

expensive than BERT embeddings.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 102

0 10000 20000 30000 40000 50000
Seconds

BlazeIt

TASTI-T
TMAS
Train target DNN
Bucket target DNN
Embedding
Cluster

(a) Breakdown of time to construct indexes for
TASTI and for BlazeIt on the night-street
dataset. The BlazeIt index is the “target-
model annotated set” (TMAS) [93]. Similar re-
sults hold for other datasets.

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0

Index construction (s)

25000
30000
35000

Ta
rg

et
 D

NN
 c

al
ls

(q
ue

ry
 ti

m
e)

BlazeIt
TASTI-T

(b) Index construction time vs performance of
TASTI and BlazeIt for aggregation queries on
the night-street dataset. Similar results hold
for other datasets.

We refer to TASTI when using a pre-trained DNN as the embedding DNN as “TASTI-

PT” (pre-trained) and TASTI when using a triplet-loss trained embedding DNN as “TASTI-

T” (trained). We demonstrate that TASTI-T generally outperforms TASTI-PT.

Hardware and timing. We evaluated TASTI on a private server with a single NVIDIA

V100 GPU, 2 Intel Xeon Gold 6132 CPUs (56 hyperthreads), and 504GB of memory. In

contrast to prior work, we timed end-to-end query processing times for TASTI, including

the video loading and embedding DNN execution times, which is excluded in prior work [93].

Due to the large cost of executing the target labeler, we simulated its execution by caching

target labeler results and computing the average execution time for the target labeler. For

baselines, we only timed the target labeler computation and exclude the computational

cost of proxy models, which strictly improves the baselines. We excluded the cost of query

processing [93, 95] as it is negligible in all cases. Namely, the query processing is over orders

of magnitude less expensive than target labeler invocation for all queries we consider.

Index Construction Performance

To understand the index construction performance, we measured the wall clock time to

construct TASTI indexes. We compared to BlazeIt, which constructs indexes by executing

the target labeler on a subset of the data (referred to as the “TMAS” [93]). For BlazeIt,

we only considered the cost of constructing the TMAS. For TASTI, we measured the full

index construction time, including the embedding DNN training and distance computation

times. We computed the construction times on the night-street dataset; similar results

hold for other datasets.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 103

We show the breakdown of index construction time for TASTI and BlazeIt in Fig-

ure 4.2a using the parameters in Section 4.1.5. TASTI requires far fewer target labeler

invocations for index construction, so is substantially faster than BlazeIt.

We additionally show the index construction time vs performance for BlazeIt and a

range of parameters for TASTI (Figure 4.2b). TASTI can outperform or match BlazeIt

performance with up to 10× less expensive index construction times.

End-to-end Performance

We show that TASTI outperforms recent state-of-the-art per-query proxy methods for ap-

proximate aggregation, selection with guarantees, and limit queries. For all video datasets in

this section, we used 3,000 training records, 7,000 cluster representatives, and an embedding

size of 128. To show the generality of TASTI, we used a single set of embeddings/distances

for both taipei classes. For the WikiSQL and Common Voice datasets, we used 500 train-

ing examples and 500 cluster representatives. We measured the query processing costs or

query accuracy in this section.

Approximate aggregation. For approximate aggregation queries, we compared TASTI

to using no proxy (random sampling) and an ad-hoc trained proxy model. We used the

exact experimental setup as BlazeIt [93] for video datasets, which targeted an error of

0.01 and a success probability of 95%. We aggregated over the average number of objects

per frame for all video datasets (cars or buses), the number of clauses per statement in the

WikiSQL dataset, and the fraction of male speakers in the Common Voice dataset.

As shown in Figure 4.3, TASTI outperforms for aggregation queries on all datasets.

In particular, TASTI outperform state-of-the-art per-query proxies for aggregation queries

(BlazeIt) by up to 2× with less expensive index construction costs. Further, TASTI

outperforms no proxy by up to 3×.
TASTI’s improved performance comes from better query-specific proxy scores (ρ2 of

0.91 vs 0.55). As the correlation of the proxy scores with the target labeler increases, the

control variates variance decreases. Reduced variance results in fewer samples, as the EBS

stopping algorithm is adaptive with the variance.

Selection. For selection queries with statistical guarantees (SUPG queries), we compared

TASTI to using an ad-hoc trained proxy model (standard random sampling is not appro-

priate for SUPG queries). We used the exact same experimental setup as in SUPG [95]

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 104

0

25

50

Ta
rg

et
 D

NN
ca

lls
 (t

ho
us

an
ds

)

53.1k
34.7k

25.1k 21.2k

a) night-street

0

50

100
117.1k

68.3k 52.4k 39.1k

b) taipei (car)

0

10

20

Ta
rg

et
 D

NN
ca

lls
 (t

ho
us

an
ds

)

18.1k 16.9k
10.5k 8.2k

c) taipei (bus)

0

50

66.6k
48.6k

27.1k 20.7k

d) amsterdam

No proxy

Per-query

proxy TASTI-PT
TASTI-T

0

20

Ta
rg

et
 D

NN
ca

lls
 (t

ho
us

an
ds

)

26.3k 26.3k 24.1k 24.0k

e) wikisql

No proxy

Per-query

proxy TASTI-PT
TASTI-T

0

10

20 17.1k 16.8k

9.5k
6.7k

f) common-voice

Figure 4.3: Number of target labeler invocations for baselines and TASTI for approximate
aggregation queries (lower is better). TASTI outperforms baselines in all cases, including
prior, per-query proxy state-of-the-art by up to 2×.

for the video datasets. For all queries, we used a recall target of 90% with a confidence of

95%, as used in [95]. We search for cars or buses in the video datasets, star operators for

WikiSQL, and male speakers in the Common Voice dataset.

As shown in Figure 4.4, TASTI outperforms on all datasets. In particular, TASTI

can improve the false positive rate by almost 21× over recent state-of-the-art. We further

show that the triplet training improves performance. As with aggregation queries, TASTI’s

improved performance comes from better query-specific proxy scores (ρ2 of 0.90 vs 0.79).

Limit queries. For limit queries, we used the ranking algorithm proposed by BlazeIt [93].

We use the exact same experimental setup as BlazeIt for the video datasets (including the

query configurations, e.g., number of objects, etc.). For limit queries, we use a custom scoring

function which is the regular scoring function with k = 1 and ties broken by distance to the

cluster representatives.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 105

0

25

50

FP
R

(%
)

33.7%
53.5%

7.8%

a) night-street

0

10 7.0%

13.3%

4.4%

b) taipei (car)

0

50

100

FP
R

(%
)

88.6% 87.1%
68.5%

c) taipei (bus)

0

25

50 49.8%

16.7%
2.4%

d) amsterdam

Per-query

proxy TASTI-PT
TASTI-T

0

20

FP
R

(%
)

28.2% 23.8% 23.7%

e) wikisql

Per-query

proxy TASTI-PT
TASTI-T

0

10
12.7%

8.3%

2.8%

f) common-voice

Figure 4.4: False positive rate for recall-target SUPG queries (lower is better). We show
the performance of baselines and TASTI. As shown, TASTI outperforms baselines in all
cases.

Figure 4.5 shows TASTI outperforms on all datasets. TASTI can improve performance

by up to 24× compared to recent state-of-the-art. As we demonstrate, TASTI’s FPF mining

and FPF clustering are critical for performance when searching for rare events. The FPF

algorithm naturally produces clusters that are far apart, which is beneficial when searching

for rare events.

4.1.6 Discussion

To reduce the cost of queries using expensive target labelers, we introduce a method of

constructing indexes for unstructured data. TASTI relies on the key property that queries

only require access to target labelers outputs, which are often highly redundant. TASTI

uses an embedding DNN and target labeler annotated cluster representatives as its index,

which allows for more accurate and generalizable proxy scores across a range of query types.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 106

0

2500

5000

Ta
rg

et
 D

NN
ca

lls

5055

473 700

a) night-street

0

25

50
52

10 10

b) taipei (car)

0

5

10

Ta
rg

et
 D

NN
ca

lls

12 11 10

c) taipei (bus)

0

200

400
479

13 11

d) amsterdam

Per-query

proxy TASTI-PT
TASTI-T

0

10000

Ta
rg

et
 D

NN
ca

lls

16056

107 39

e) wikisql

Per-query

proxy TASTI-PT
TASTI-T

0

200

315

81 46

f) common-voice

Figure 4.5: Number of target labeler invocations for baselines and TASTI for limit queries
(lower is better). TASTI outperforms baselines in all cases, including prior state-of-the-art
by up to 34×.

We theoretically analyze TASTI to understand its statistical properties, in particular

how index quality relates to query accuracy. We show TASTI indexes can be constructed

up to 10× more efficiently than recent work. We further show that they can be used to

answer queries up to 24× more efficiently than recent state-of-the-art.

4.2 Smol: Hardware Efficient Proxy Generation

Deep neural networks (NNs) now power a range of visual analytics tasks and systems [11,

83, 93, 94] due to their high accuracy, but state-of-the-art DNNs can be computationally

expensive. For example, accurate object detection methods can execute as slow as 3-5 frames

per second (fps) [73, 165].

To execute visual analytics queries efficiently, systems builders have developed optimiza-

tions to trade off accuracy and throughput [11, 83, 93, 94, 124]: more accurate DNNs are

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 107

more computationally expensive [74, 164, 165]. Many of these systems (e.g., NoScope,

BlazeIt, Tahoma, and probablistic predicates) accelerate visual analytics queries by us-

ing proxy or specialized NNs, which approximate larger target DNNs. These specialized NNs

can be up to 5 orders of magnitude cheaper to execute than their target DNNs and are used

to filter inputs so the target DNNs will be executed fewer times [11, 83, 93, 94, 124].

This prior work focuses solely on reducing DNN execution time. These systems were

built before recent DNN accelerators were introduced and were thus benchmarked on older

accelerators. In this context, these systems correctly assume that DNN execution time is the

overwhelming bottleneck. For example, Tahoma benchmarks on the NVIDIA K80 GPU,

which executes ResNet-50 (a historically expensive DNN [2, 40, 41]) at 159 images/second.

However, as accelerators and compilers have advanced, these systems ignore a key bottle-

neck in end-to-end DNN inference: preprocessing, or the process of decoding, transforming,

and transferring image data to accelerators. In the first measurement study of its kind,

we show that preprocessing costs often dominate end-to-end DNN inference when using

advances in hardware accelerators and compilers. For example, the historically expensive

ResNet-50 [2, 41] has improved in throughput by 28× on the inference-optimized NVIDIA

T4 GPU. As a result, ResNet-50 is now 9× higher throughput than CPU-based image pre-

processing, making preprocessing the bottleneck, on the inference-optimized g4dn.xlarge

Amazon Web Services (AWS) instance, which has a NVIDIA T4. This boost in efficiency

translates to both power and dollar costs: preprocessing requires approximately 2.3× as

much power and costs 11× as much as DNN execution. Similar results hold for Google

Cloud’s T4 inference optimized instances. These imbalances become only higher with smaller

specialized NNs that recent visual analytics systems use.

In light of these observations, we examine opportunities for more principled joint opti-

mization of preprocessing and DNN execution, especially for preprocessing-bound, high-

throughput batch analytics workloads. We leverage two insights: a) the accuracy and

throughput of a DNN is closely coupled with its input format and b) preprocessing op-

erations can be placed on both CPUs and accelerators. Thus, rather than treating the input

format as fixed, we consider methods of using inputs as a key step in DNN architecture

search and training.

This yields two novel opportunities for accelerating inference: a) cost-based methods

that leverage low-resolution visual data for higher accuracy or improved throughput and

b) input- and hardware-aware methods of placing preprocessing operations on the CPU or

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 108

accelerator and correctly pipelining computation.

A critical component to leverage these opportunities is a cost model to select query

plans. We correct the erroneous assumption in prior work that DNN execution dominates

end-to-end DNN inference. We instead propose a cost model that is preprocessing aware

and validate that our cost model is more accurate than prior cost models. While our prepro-

cessing aware cost model is simple, it enables downstream optimizations, described below.

First, we propose methods of using natively present, low resolution visual data for more

efficient, input-aware accuracy/throughput trade offs. Image and video serving sites often

have natively present low resolution data, e.g., Instagram has thumbnails [13] and YouTube

stores multiple resolutions of the same video. Even when low resolution data is not natively

present, we can partially decode visual data (e.g., omitting the deblocking filter in H.264

decoding). As such, we can use natively present data or partial decoding for reduced pre-

processing costs. However, naively using this reduced fidelity data can reduce accuracy. To

recover accuracy, we propose an augmented DNN training procedure that explicitly uses

data augmentation for the target resolution. Furthermore, we show that using larger, more

accurate DNNs on low resolution data can result in higher accuracy than smaller DNNs

on full resolution data. Enabled by our new preprocessing-aware cost model, we can select

input formats and DNN combinations that achieve better accuracy/throughput trade offs.

Second, we decide to place preprocessing operations on the CPU or accelerator to balance

the throughput of DNN execution and preprocessing. To enable high-performance pipelined

execution, we build an optimized runtime engine for end-to-end visual DNN inference. Our

optimized runtime engine makes careful use of pipelined execution, memory management,

and high-performance threading to fully utilize available hardware resources.

We implement these optimizations in Smol, a runtime engine for end-to-end DNN infer-

ence that can be integrated into existing visual analytics systems. We use Smol to imple-

ment the query processing methods of two modern visual analytics systems, BlazeIt [93]

and Tahoma [11], and evaluate Smol on eight visual datasets, including video and image

datasets. We verify our cost modeling choices through benchmarks on the public cloud and

show that Smol can achieve up to 5.9× improved throughput on recent GPU hardware

compared to recent work in visual analytics.

In the remainder of this section, we describe trends in accelerator efficiency, Smol’s

overview and optimizations, and our evaluation of Smol.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 109

4.2.1 Measurement Study of End-to-End DNN Inference

We benchmark DNNs and visual data preprocessing on the public cloud, showing that

preprocessing costs can now dominate end-to-end DNN inference. We show that these trends

arise from dramatically improved new accelerators reducing dollar and power costs of DNN

execution, and efficient use of hardware.

We benchmark throughputs on the inference-optimized T4 GPU with a dollar cost-

balanced number of vCPU cores on an AWS instance. Our benchmarks show that prepro-

cessing dominates in both dollar cost and power costs. Preprocessing requires 2.2× as much

power (158W vs 70W) and costs 11× as much for ResNet-50 ($2.37 vs $0.218). These trends

are similar for other cloud providers (e.g., Google Cloud Platform’s T4-attachable instances

and Microsoft Azure’s newly announce T4 instances) and instance types.

Experimental setup. We benchmarked the popular ResNet-50 model for image classi-

fication [74], which has widely been used in benchmarking [2, 41] and has been considered

expensive. Specialized NNs are typically much cheaper than ResNet-50.

We benchmarked the time for only DNN execution and the time for preprocessing sep-

arately to isolate bottlenecks.

We benchmarked on the publicly available inference-optimized NVIDIA T4 GPU [134].

We used the g4dn.xlarge AWS instance which has 4 vCPU cores (hyperthreads): this

configuration is cost balanced between vCPUs and the accelerator. This instance type is

optimized for DNN inference; similar instances are available on other cloud providers. We

used the TensorRT compiler [3] for optimized execution. While we benchmarked on the T4,

other contemporary, non-public accelerators report similar or improved results [56, 89].

Effect of software on throughput. We benchmarked ResNet-50 throughput on the

inference-optimized T4 GPU using three software systems for DNNs to show how more

efficient software affects throughput. We benchmark using Keras [37], PyTorch [139], and

TensorRT [3]. We note that Keras was used by Tahoma and TensorRT is an optimized

DNN computational graph compiler.

As shown in Table 4.1, efficient use of accelerators via optimized compilers (TensorRT)

can result in up to a 10× improvement in throughput. Importantly, preprocessing becomes

the bottleneck with the efficient use of accelerators.

Breakdown of end-to-end DNN inference. DNN inference includes preprocessing. For

the standard ResNet-50 configuration, the preprocessing steps are [74, 127]: 1) Decode the

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 110

Execution environment Throughput (im/s)
Keras 243
PyTorch 424
TensorRT 4,513

Table 4.1: Throughput of ResNet-50 on the T4 with three different execution environments.
Keras was used in [11]. The efficient use of hardware can result in over a 17× improvement
in throughput.

0 250 500 750 1000 1250 1500 1750 2000
Microseconds

RN-50

RN-18

Preproc

222 us

79 us

1668 us 201 us125 us

DNN execution
Decode

Resize
Normalize

Split

Figure 4.6: Breakdown of end-to-end inference of ResNet-50 and 18 for a batch size of 64
on the inference-optimized AWS g4dn.xlarge instance type. The execution of the DNN is
7.1× and 22.9× faster than preprocessing data for ResNet-50 and 18 respectively.

compressed image, e.g., JPEG compressed, 2) Resize the image with an aspect-preserving

resize such that the short edge of the image is 256 pixels. Centrally crop the image to

224x224, 3) Convert the image to float32. Divide the pixel values by 255, subtract a per-

channel value, and divide by a per-channel value, and 4) Rearrange the pixel values to

channels-first.

To see the breakdown of preprocessing the costs, we implemented these preprocessing

steps in hand-optimized C++, ensuring best practices for high performance C++, including

reuse of memory. We used libturbo-jpeg, a highly optimized library for JPEG decom-

pression, for decoding the JPEG images. We used OpenCV’s optimized image processing

libraries for the resize and normalization. For DNN execution, we executed the DNNs with

TensorRT and multiple CUDA streams on synthetic images. We run all benchmarks on a

standard g4dn.xlarge AWS instance and use multithreading to utilize all the cores.

As shown in Figure 4.6, simply decoding the JPEG files achieves lower throughput than

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 111

DNNs
Input
formats

Plan
generation,
optimization

Throughput,
accuracy
estimation

Constraints

Plan
selection

Execution
enginePlans Resource

estimates
Optimal
plan(s)

Figure 4.7: System diagram of Smol. As input, Smol takes a set of DNNs, visual input
formats, and optional constraints. As output, Smol returns an optimal set of plans or plan,
depending on the constraints. Smol will generate plans, estimate the resources for each
plan, and select the Pareto optimal set of plans.

the throughput of ResNet-50 execution. All together, preprocessing achieves 7.1× lower

throughput than ResNet-50 execution. These overheads increase to up to 22.9× for ResNet-

18. As discussed, preprocessing dominates in terms of power and dollar costs as well.

Similar results hold for other networks, such as the MobileNet-SSD [82, 120] used by

MLPerf Inference [148]. This DNN executes at 7,431 im/s, compared to a preprocessing

throughput of 397 im/s on the MS-COCO dataset.

Discussion. Several state-of-the-art DNNs execute far slower than the DNNs benchmarked

in this section, e.g., a large Mask R-CNN may execute at 3-5 fps. However, many systems

use specialized NNs to reduce invocations of these large DNNs. For example, the BlazeIt

system uses a specialized NN to approximate the larger DNN, which reduces the number of

large DNN invocations [93]. As these specialized NNs are small (potentially much smaller

than even ResNet-50), we believe our benchmarks are of wide applicability to DNN-based

visual analytics.

4.2.2 Smol Overview

To reduce the imbalance between preprocessing and DNN execution, we develop a novel

system, Smol. Smol’s goal is to execute end-to-end batch visual analytics queries. Unlike

prior work, Smol aims to optimize end-to-end query time, including the computational cost

of preprocessing in addition to the computational cost of DNN execution.

To execute these visual analytics queries, Smol uses a cost-based model to generate

query plans that span preprocessing and DNN execution. Smol executes these plans in

its optimized end-to-end inference engine. For a given query system (e.g., Tahoma or

BlazeIt), Smol’s cost model must be integrated into the system.

We show a schematic of Smol’s architecture in Figure 4.7.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 112

Model Throughput Preproc. bound?
MobileNet-V1 16,885 Yes
VGG19 1,889 Yes
Inception V4 1,339 Yes
ResNet-50 4,513 Yes
ResNeXt-101 1,724 Yes
SSD MobileNet-V1 (300) 7,609 Yes
SSD ResNet (1200) 137 No
Mask R-CNN (1200) 14 No

Table 4.2: Throughput of various models on the T4 GPU (classification models on the top
and detection models on the bottom) [178]. As shown, all but the largest, state-of-the-art
detection models are preprocessing bound.

System Overview

Deployment setting. In this work, we focus on high throughput batch settings, as recent

work does [11, 93, 95, 181]. Smol’s goal is to achieve the highest throughput on the available

hardware resources. For example, a visual analytics engine might ingest images or videos

daily and run a batch analytics job each night. Smol is most helpful for preprocessing-

bound workloads (Table 4.2). As we describe, Smol accepts models exported from training

frameworks (e.g., PyTorch, TensorFlow, or Keras) and optimizes its inference. As such, it

is designed to be used at inference time, not with training frameworks.

Nonetheless, several of our techniques, particularly in jointly optimizing preprocessing

and inference, also apply to the low-latency or latency-constrained throughput settings.

In high throughput batch settings, visual data is almost always stored in compressed

formats that require preprocessing. Uncompressed visual data is large: a single hour of

720p video is almost 900GB of data whereas compressed video can be as small as 0.5GB per

hour. Similarly, JPEG images can be up to 10× smaller than uncompressed still images.

Smol inference. As inputs, Smol will take a set of trained DNNs and a set of natively

available visual data formats (e.g., full resolution JPEG images, thumbnail JPEGs). We

denote the set of DNNs as D and the set of visual data formats as F . Smol further takes

a set of calibration images (i.e., a validation set) to estimate accuracy.

Given these inputs, Smol will estimate costs to select a plan (concretely, a DNN and an

input format). Smol will then optimize this plan and execute it.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 113

Smol optionally takes a throughput or accuracy constraint at inference time. If a con-

straint is specified, Smol will select an optimized execution plan that respects these con-

straints. Otherwise, Smol will execute the highest throughput plan. Smol can be integrated

with other systems by returning a Pareto optimal set of plans (in accuracy and throughput).

The calling system will then select a plan that Smol will execute.

Smol training. While the user can provide the set of trained DNNs, Smol can optionally

train specialized NNs as well. Given a set of DNN architectures (e.g., ResNets) and the

natively available formats, Smol will choose to train some or all of the DNNs. Given the

initial set of models on full resolution data, Smol will fine-tune the networks on the cross

product of D and resolutions (Smol will use the same model for different formats of the

same resolution). As Smol fine-tunes, this process adds at most a 30% overhead in training

in the settings we consider. Smol can also train these network at execution time [93].

Components. Smol implements the training phase as other systems do [11, 93, 94]. As

training specialized NNs has been studied in depth in prior work, we defer discussion to this

prior work. Smol differs from these systems only in it’s low-resolution augmented training

(discussed below).

At inference time, Smol contains three major components: 1) a plan generator, 2) a

cost estimator, and 3) an execution engine. We show these components in Figure 4.7.

Smol first generates query plans from D and F by taking D×F . For each plan, Smol

will estimate the relative costs of preprocessing and DNN execution and decide where to place

preprocessing operations (i.e., on the CPU or accelerator) for highest throughput. Given

these optimized plans, Smol will estimate the accuracy and throughput of these plans

using its cost model. This process is cheap compared to training, so Smol exhaustively

benchmarks the Pareto frontier of D × F . Smol uses a preprocessing-aware cost model, in

contrast to prior work that ignores these costs. Finally, Smol will return the best query

plan if a constraint is specified or the Pareto optimal set of query plans if not.

Optimizations. To efficiently execute queries, Smol has several optimizations for im-

proved accuracy/throughput trade offs and an efficient DNN execution engine.

Briefly, Smol achieves improved accuracy and throughput trade offs by considering an

expanded set of DNNs and leveraging natively present low-resolution data (Section 4.2.4).

In contrast, prior work considers only one input format. From the selected DNN and input

format, Smol will efficiently execute such plans by placing preprocessing operations on CPUs

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 114

or accelerators in a hardware- and input-aware manner, efficiently pipelining computation

stages, and optimizing common preprocessing operations (Section 4.2.5). We describe these

optimizations in detail below.

Examples

Classification example. Smol can be incorporated into prior work that uses special-

ization for classification queries [11, 94, 124]. These queries are often binary classification

queries, e.g., the presence or absence of a car in a video. We describe Tahoma in this

example, but note that other systems are similar in spirit.

Tahoma uses a fixed target model and considers a fixed input format, namely the

provided input format of full-resolution JPEG images. Tahoma considers 24 specialized

NN, each of which are cascaded with the target DNN. Thus, |F| = 1 and |D| = 24. Tahoma

aims to return the configuration with the highest throughput for a given accuracy. Tahoma

estimates the throughput of Di ∈ D by adding preprocessing costs, which we show leads to

inaccurate throughput estimates. We further note that Tahoma considers downsampling

full resolution images for improved DNN execution, but not for reduced preprocessing costs.

In contrast, Smol can use natively present thumbnail images, which would expand F .
Decoding these thumbnail images is significantly higher throughput.

Aggregation example. Smol can be incorporated into prior work that uses specialized

NNs for aggregation queries over visual data, e.g., the number of cars in a video. The

recent BlazeIt system uses specialized NNs as a control variate to reduce the variance

in sampling [93]. As the variance is reduced, this procedure results in fewer target model

invocations compared to standard random sampling. BlazeIt trains a single specialized

NN (|D| = 1) and uses a fixed input format (|F| = 1).

In contrast, Smol can use an expanded set of videos which are encoded at different

resolutions. Namely, Smol considers |F| > 1. These other formats are natively present in

many serving applications, e.g., for thumbnail or reduced bandwidth purposes.

4.2.3 Cost Modeling for Visual Analytics

When deploying DNN-based visual analytics systems, application developers have different

resource constraints. As such, these systems often expose a way of trading off between ac-

curacy and throughput. Higher accuracy DNNs require more computation: we demonstrate

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 115

ResNet Throughput Accuracy
ResNet-18 12,592 68.2%
ResNet-34 6,860 71.9%
ResNet-50 4,513 74.34%

Table 4.3: Throughput and top-one accuracy for ResNets of different depths. As shown,
there is a trade off between accuracy and throughput (i.e., computation).

Config. Preproc DNN execution Pipelined Smol estimate BlazeIt estimate Tahoma estimate
(im/s) (im/s) throughput (im/s) (% error) (% error) (% error)

Balanced 4001 4999 4056 1.4%, 4001 23.2%, 4999 44.8%, 2222
Preproc-bound 534 4999 557 4.1%, 534 797.5%, 4999 9.3%, 482
DNN-bound 5876 1844 1720 7.2%, 1844 7.2%, 1884 22.7%, 1403

Table 4.4: Measurements of preprocessing, DNN execution, and pipelined end-to-end DNN
inference for three configurations of DNNs and input formats: balanced, preprocessing-
bound, and DNN-execution bound. As shown, Smol matches or ties the most accurate
estimate for all conditions.

this property on the popular ImageNet dataset [47] with standard ResNets in Table 4.3.

Prior work has designed high throughput specialized DNNs for filtering [11, 93, 94]. We do

not focus on the design of DNNs in this work and instead use standard DNNs.

One popular method for DNN selection is to use a cost model [11, 94]. We describe

cost modeling for DNNs and how prior work estimated the throughput of DNN execution.

Critically, these prior cost models ignore preprocessing costs or ignore that preprocessing

can be pipelined with DNN execution. We show that ignoring these factors can lead to

inaccurate throughput estimations (Table 4.4). We then describe how to make cost models

preprocessing-aware.

Cost models. Given resource constraints and metrics to optimize, a system must choose

which DNNs to deploy. For example, one popular resource constraint is a minimum through-

put and one popular metric is accuracy. As such, we focus on throughput-constrained ac-

curacy and accuracy-constrained throughput.

Specifically, denote the possible set of system configurations as C1, ..., Cn. Denote the

resource consumption estimate of each configuration as R(C) and the resource constraint as

Rmax. Denote the metric to optimize as M(C).

In its full generality, the optimization problem is
max
i
M(Ci)

s.t. R(Ci) ≤ Rmax.
(4.4)

In this framework, both accuracy and throughput can either be constraints or metrics. For

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 116

example, for throughput-constrained accuracy, R(Ci) would be an estimate of the through-

put of Ci and M(Ci) would be an estimate of the accuracy of Ci. Similarly, for accuracy-

constrained throughput, R(Ci) would be an estimate of the accuracy and M(Ci) would be

an estimate of the throughput.

As an example, Tahoma generates Ci = [Di,1, ..., Di,k] to be a sequence of k models, Di,j ,

that are executed in sequence. The resource R(Ci) = A(Ci) is the accuracy of configuration

Ci and the metric M(Ci) = T (Ci) is the throughput of configuration Ci.

Prior work has focused on expanding the set of Ci or evaluating R(Ci) and M(Ci)

efficiently [11, 30, 94, 124]. A common technique is to use a smaller model (e.g., a specialized

NN) to filter data before executing a larger, target DNN in a cascade. For example, when

detecting cars in a video, NoScope will train an efficient model to filter out frames without

cars [94]. Cascades can significantly expand the feasible set of configurations.

For cost models to be effective, the accuracy and throughput measurements must be

accurate. We discuss throughput estimation below. Accuracy can be estimated using best

practices from statistics and machine learning. A popular method is to use a held-out

validation set to estimate the accuracy [22]. Under the assumption that the test set is

from the same distribution as the validation set, this procedure will give an estimate of the

accuracy on the test set.

Throughput estimation. A critical component of cost model for DNNs is the throughput

estimation of a system configuration Ci; recall that Ci is represented as a sequence of one or

more DNNs, Di,j . Given a specific DNN Di,j , estimating its throughput simply corresponds

to executing the computation graph on the accelerator and measuring its throughput. As

DNN computation graphs are typically fixed, this process is efficient and accurate.

Estimation ignoring preprocessing. Prior work [93, 94, 124] has used the throughput of

Di,j to estimate the throughput of end-to-end DNN inference. Specifically, BlazeIt and

NoScope estimates the throughput, T̂ (Ci) as

T̂ (Ci) ≈
1∑k

j=1
1

α−1
j Texec(Di,j)

(4.5)

where αj is the pass-through rate of DNN Di,j and Texec(Di,j) is the throughput of executing

Di,j . Texec(Di,j) can be directly measured using synthetic data and αj can be estimated

with a validation set. This approximation holds when the cost of preprocessing is small

compared to the cost of executing the DNNs.

However, this cost model ignores preprocessing costs. As a result, it is inaccurate when

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 117

preprocessing costs dominate DNN execution costs or when preprocessing costs are approx-

imately balanced with DNN execution costs (Table 4.4).

Estimation ignoring pipelining. Other systems (e.g., Tahoma) [11] estimate end-to-end

DNN inference throughput as

T̂ (Ci) ≈
1

1
Tpreproc(Ci)

+ 1
Texec(Ci)

. (4.6)

This approximation ignores that preprocessing can be pipelined with DNN execution. As a

result, this approximation holds when either preprocessing or DNN execution is the over-

whelming bottleneck, but is inaccurate for other conditions, namely when preprocessing

costs are approximately balanced with DNN execution costs (Table 4.4).

These throughput approximations (that ignore preprocessing costs and ignore pipelining)

ignore two critical factors: 1) that input preprocessing can dominate inference times and

2) that input preprocessing can be pipelined with DNN execution on accelerators. We now

describe a more accurate throughput estimation scheme.

Corrected throughput estimation. For high throughput DNN inference on accelerators,

the DNN execution and preprocessing of data can be pipelined. As a result, Smol uses a

more accurate throughput estimate for a given configuration:

T̂ (Ci) ≈ min

Tpreproc(Ci), 1∑k
j=1

1
α−1
j Texec(Di,j)

 (4.7)

Importantly, preprocessing can dominate end-to-end DNN inference (Section 4.2.1). While

there are some overheads in pipelining computation, we empirically verify the min approxi-

mation (Section 4.2.6).

If preprocessing costs are fixed, then it becomes optimal to maximize the accuracy of

the DNN subject to the preprocessing throughput. Namely, the goal is to pipeline the

computation as effectively as possible. We give two examples of how this can change which

configuration is chosen.

First, when correctly accounting for preprocessing costs in a throughput-constrained

accuracy deployment, it is not useful to select a throughput constraint higher than the

throughput of preprocessing. Second, for an accuracy-constrained throughput deployment,

the most accurate DNN subject to the preprocessing throughput should be selected.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 118

4.2.4 Input-aware Methods for Accuracy and Throughput Trade Offs

Given the corrected cost model, Smol’s goal is to maximize the minimum of the preprocess-

ing and DNN execution throughputs. However, if the input format and resolution are fixed,

preprocessing throughputs are fixed and can be lower than DNN execution throughputs.

To provide better accuracy and throughput trade-offs, we propose three techniques: 1)

expanding the search space of specialized DNNs, 2) using natively present, low resolution

visual data, and 3) a DNN training technique to recover accuracy loss from naively using

low resolution visual data.

Expanding search space

As described, many systems only consider cheap, specialized NNs. Concretely, BlazeIt and

Tahoma considers specialized NNs that can execute up to 250,000 images/second, which

far exceeds preprocessing throughputs for standard image and video encodings. As DNNs

are generally more accurate as they become more expensive, these systems use specialized

NNs that are less accurate relative to preprocessing throughput-matched NNs.

In contrast, Smol considers NNs that have been historically considered expensive. We

have found that standard ResNet configurations [74] (18 to 152) strongly outperforms spe-

cialized NNs used in prior work. Furthermore, ResNet-18 can execute at 12.6k images/sec-

ond, which generally exceeds the throughput of preprocessing. Thus, Smol currently uses

these ResNets as the specialized NNs. As hardware advances, other architectures (e.g.,

ResNeXt [180]) may be appropriate.

Low-resolution data

Overview. Many visual data services store the data at a range of resolutions. Low-

resolution visual data is typically stored for previewing purposes or for low-bandwidth situ-

ations. For example, Instagram stores 161x161 previews of images [13]. Similarly, YouTube

stores several resolutions of the same video for different bandwidth requirements.

Decoding low-resolution visual data is more efficient than decoding full resolution data.

Smol could decode and then upscale the low-resolution visual data for improved prepro-

cessing throughput. However, we show that naively upscaling gives low accuracy results.

Instead, Smol will train DNNs to be aware of low-resolution data, as described below.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 119

Recent work uses lower resolution data to improve NN throughput, but not to reduce

preprocessing costs [11, 183]. These systems decode full-resolution data and downsamples

the data, which does not improve preprocessing throughput.

Selecting DNNs and resolution jointly. Many systems provide accuracy and through-

put trade-offs by cascading a specialized NN and a more accurate, target DNN [11, 94, 124].

However, these specialized NNs are often bottlenecked by preprocessing costs.

Instead, Smol uses low resolution data reduce preprocessing costs, and therefore end-

to-end execution costs. However, low resolution visual data discards visual information and

can result in lower accuracy in many cases. Nonetheless, Smol can provide accuracy and

throughput trade-offs by carefully selecting DNN and input format combinations.

As a motivating example, consider ResNet-34 and 50 as the DNNs, and full resolution

and 161x161 PNG thumbnails as the input formats. ResNet-34 and ResNet-50 execute at

6,861 and 4,513 images/second. On full resolution data, they achieve 72.72% and 75.16% ac-

curacy on ImageNet, respectively. On low resolution data, they achieve 72.50% and 75.00%

accuracy, respectively (when upscaling the inputs to 224x224 and using Smol’s augmented

training procedure). Full resolution and 161x161 thumbnails decode at 527 and 1,995 im-

ages/second, respectively. In this example, executing ResNet-50 on 161x161 thumbnails

outperforms executing ResNet-34 on full resolution data, as end-to-end execution is bottle-

necked by preprocessing costs.

Thus, Smol jointly considers both the input resolution format and the DNN. For classifi-

cation, Smol also considers using a single DNN for accuracy/throughput trade-offs, instead

of cascading a specialized DNN and target DNN.

For a given input format, Smol will only consider DNNs that exceed the throughput

of the preprocessing costs and select the highest accuracy DNN subject to this constraint.

As we have demonstrated, in certain cases, this will result in selecting lower resolution data

with more expensive DNNs, contrary to prior work.

Training DNNs for Low-resolution

As described above, Smol can use low-resolution visual data to decrease preprocessing costs.

However, naively using low-resolution can decrease accuracy, especially for target DNNs. For

example, using a standard ResNet-50 with native 161x161 images upscaled to the standard

224x224 input resolution results in a 10.8% absolute drop in accuracy. This drop in accuracy

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 120

is larger than switching from a ResNet-50 to a ResNet-18, i.e., nearly reducing the depth by a

third. To alleviate the drop in accuracy, Smol can train DNNs to be aware of low-resolution.

This procedure can recover, or even exceed, the accuracy of standard DNNs.

Smol trains DNNs to be aware of low-resolution by augmenting the input data at training

time. At training, Smol will downsample the full-resolution inputs to the desired resolution

and then upsample them to the DNN input resolution. Smol will do this augmentation

in addition to standard data augmentation. By purposefully introducing downsampling

artifacts, these DNNs can be trained to recover high accuracy on low-resolution data.

We show that this training procedure can recover the accuracy of full resolution DNNs

when using lossless low-resolution data, e.g., PNG compression. However, when using lossy

low-resolution data, e.g., JPEG compression, low-resolution DNNs can suffer a drop in

accuracy. Nonetheless, we show that using lossy low-resolution data can be more efficient

than using smaller, full-resolution DNNs.

4.2.5 An Optimized Runtime Engine for End-to-End Visual Inference

In order to efficiently execute end-to-end visual inference in the high-throughput setting, we

must make proper use of all available hardware. We describe how to efficiently pipeline pre-

processing and DNN execution for full use of hardware resources, how to optimize common

preprocessing operations, how to place operations on CPUs or accelerators, and methods of

partially decoding visual data. Several of these optimizations have been explored in other

contexts, but not for end-to-end DNN inference [54, 57].

Efficient Use of Hardware

In order to efficiently use all available hardware resources, Smol must efficiently pipeline

computation, use threads, and use/reuse memory.

As executing DNNs requires computation on the CPU and accelerator, Smol must

overlap the computation. To do this, Smol uses a multi-producer, multi-consumer (MPMC)

queuing system to allow for multithreading. The producers decode the visual data and the

consumers perform DNN execution. Smol uses multiple consumers to leverage multiple

CUDA streams. As preprocessing is data parallel and issuing CUDA kernels is low overhead,

we find that setting the number of producers to be equal to the number of vCPU cores to

be an efficient heuristic for non-NUMA servers.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 121

An important performance optimization to effectively use the MPMC queuing system is

reusing memory and efficient copying to the accelerator. Prior work that focuses on efficient

preprocessing for training must pass memory buffers that contain the preprocessed images

to the caller, which does not allow for efficient memory reuse. In contrast, the caller to Smol

only requires the result of inference, not the intermediate buffers. As a result, Smol can

reuse these buffers. Furthermore, accelerators require pinned memory for efficient memory

transfer. Reusing pinned memory results in substantially improved performance. Smol will

further over-allocate memory to ensure that producer threads will not contend on consumers.

Optimizing Preprocessing Operations

A large class of common visual DNN preprocessing operations fall under the steps described

in Section 4.2.1. Briefly, they include resizing, cropping, pixel-level normalization, data type

conversion, and channel reordering. We can optimize these operations at inference time by

fusing, reordering, and pre-computing operations.

To optimize these steps, Smol will accept the preprocessing steps as a computation

directed, acyclic graph (DAG) and performs a combination of rule-based and cost-based

optimization of these steps. To optimize a computation DAG, Smol will exhaustively gen-

erate possible execution plans, apply rule-based optimization to filter out plans, and perform

cost-based optimization to select between the remaining plans.

Smol contains rules of allowed operation reordering to generate the possible set of exe-

cution plans: 1) Normalization and data type conversion can be placed at any point in the

computation graph, 2)Normalization, data type conversion, and channel reordering can be

fused, 3) Resizing and cropping can be swapped.

Once Smol generates all possible execution plans, Smol will then apply the following

rules to prune plans: 1) Resizing is cheaper with fewer pixels, 2) Resizing is cheaper with

smaller data types (e.g., INT8 resizing is cheaper than FLOAT32 resizing), 3) Fusion always

improves performance. We currently implement fusion manually, but code generation could

also be applied to generate these kernels [138]. Given a set of plans after rule-based pruning,

Smol approximates the cost by counting the number of arithmetic operations in each plan

for the given data types. Smol will select the cheapest plan.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 122

Preprocessing Operator Placement

In addition to optimizing common preprocessing operations, Smol can place preprocessing

operations on the CPU or accelerator. Depending on the input format/resolution and DNN,

the relative costs of preprocessing and DNN execution may differ. For example, small

specialized NNs may execute many times faster than preprocessing, but a state-of-the-art

Mask R-CNN may execute slower than preprocessing.

As a result, to balance preprocessing and DNN execution costs, it may be beneficial

to place operations on either the CPU or accelerator. Furthermore, many preprocessing

operations (e.g., resizing, normalization) are efficient on accelerators, as the computational

patterns are similar to common DNN operations.

If DNN execution dominates, then Smol will place as many operations on the CPU as

possible, to balance costs. If preprocessing cost dominate, then Smol will place as many

operations on the accelerator as possible. Since preprocessing operations are sequential,

Smol need only consider a small number (typically under 5) configurations for a given

model and image format.

Partial and Low-Fidelity Decoding

Overview of Visual Compression Formats. We briefly describe salient properties

of popular visual compression formats, including the popular JPEG, HEVC/HEIC, and

H.264 compression formats. We describe the decoding of the data and defer a description of

encoding to other texts [141, 161, 177]. Decoding generally follows three steps: 1) entropy

decoding, 2) inverse transform (typically DCT-based), and 3) optional post-processing for

improved visual fidelity (e.g., deblocking).

Importantly, the entropy decoders in both JPEG and HEVC (Huffman decoding and

arithmetic decoding respectively) are not efficient on accelerators for DNNs as it requires

substantial branching. Furthermore, certain parts of decoding can be omitted, e.g., the

deblocking filter, for reduced fidelity but faster decoding times.

Leveraging partial decoding. When low-resolution visual data is not available, Smol

optimizes preprocessing by partially decoding visual data. Many DNNs only require a

portion of the image for inference, or regions of interest (ROI). For example, many image

classification networks centrally crop images, so the ROI is the central crop. Computing

face embeddings crops faces from the images, so the ROIs are the face crops. Furthermore,

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 123

Macroblock-based
partial decoding

Raster-order based partial
decoding (early stopping)

Full image

Decoded portion
ROI

Figure 4.8: Examples of partial decoding for images. On the left, the ROI is the central
crop of the image. For JPEG images, Smol can decode only the macroblocks that intersect
the ROI. For image formats that do not allow for independently decoding macroblocks,
Smol can partially decode based on raster order (right).

these networks often take standard image sizes, e.g., 224 × 224. We show two examples

in Figure 4.8. Computing ROIs may require expensive upstreaming processing in some

applications, e.g., executing a detection DNN.

Many image compression formats allow for partial decoding explicitly in the compression

standard and all compression formats we are aware of allow for early stopping of decoding.

We give three instantiations of partial decoding in popular visual compression formats and

provide a list of popular visual data compression formats and which features they contain in

Table 4.5. We then describe how to use these decoding features for optimized preprocessing.

First, for the JPEG image compression standard, each 8x8 block, or macroblock, in

the image can be decoded independently (partial decoding) [172]. Second, the H.264 and

HEVC video codecs contain deblocking filters, which can be turned off at the decoding

stage for reduced computational complexity at the cost of visual fidelity (reduced fidelity

decoding) [161, 177]. Third, the JPEG2000 image compression format contains “progressive”

images, i.e., downsampled versions of the same image, that can be partially decoded to a

specific resolution (multi-resolution decoding) [166].

Smol accepts as an optional input an ROI for a given image. If an ROI is specified,

Smol will only decode the parts of the image necessary to process the ROI.

Partial decoding. We present two methods of partially decoding visual data. We show

examples of each in Figure 4.8.

ROI decoding. When only a portion of the image is needed, e.g., for central cropping or

when selecting a region of interest (ROI), only the specified portion of the image need be

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 124

Format Type Low-fidelity features
JPEG Image Partial decoding
PNG, WebP Image Early stopping
HEIC/HEVC Image/Video Reduced fidelity decoding
H.264 Video Reduced fidelity decoding
VP8 Video Reduced fidelity decoding
VP9 Video Reduced fidelity decoding

Table 4.5: A list of popular visual data formats and their low-fidelity features.

decoded. To decode this portion of the image, Smol will first find the smallest rectangle that

aligns with the 8x8 macroblock border and contains the region. Then, Smol will decode

the rectangle and return the crop.

Early stopping. For compression formats that do not explicitly allow for partial decoding,

Smol can terminate decoding on parts of the image that are not necessary. For example,

if only the top N ×N pixels are required for inference, Smol will terminate decoding after

decoding the top N ×N pixels.

Reduced-fidelity decoding. Several visual compression formats contain options for re-

duced fidelity decoding. While there are several ways to reduce the fidelity of decoding for

decreased preprocessing costs, we focus on methods that are easily specified with existing

decoding APIs. Specifically, we explore reduced fidelity in the form of disabling the deblock-

ing filter. Smol will profile the accuracy of the specialized and target NNs with and without

the deblocking filter and choose the option that maximizes throughput.

4.2.6 Evaluation

We evaluated Smol on eight visual datasets and show that Smol can outperform baselines

by up to 5.9× for image datasets and 10× for video datasets at a fixed accuracy level.

Experimental Setup

Overview. We evaluate our optimizations on four image datasets and four video datasets.

The task for the image datasets is image classification. The task for the video datasets is

an aggregation query for the number of target objects per frame. For classification, we use

accuracy and throughput as our primary evaluation metrics. For the aggregation queries,

we measure query runtime as the error bounds were respected.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 125

Dataset # of classes # of train im. # of test im.
bike-bird 2 23k 1k
animals-10 10 25.4k 2.8k
birds-200 200 6k 5.8k
imagenet 1,000 1.2M 50K

Table 4.6: Summary of dataset statistics for the still image datasets we used in our eval-
uation. The datasets range in difficulty and number of classes. bike-bird is the easiest
dataset to classify and imagenet is the hardest to classify.

Datasets. We use bike-bird [26], animals-10 [9], birds-200 [170], and imagenet [47]

as our image datasets. These datasets vary in difficulty and number of classes (2 to 1,000).

In contrast, several recent systems study only binary filtering [11, 30, 124]. We summarize

dataset statistics in Table 4.6. We used thumbnails encoded in a standard short size of 161

in PNG, JPEG (q = 75), and JPEG (q = 95).

For the video datasets, we used night-street, taipei, amsterdam, and rialto as eval-

uated by BlazeIt [93]. We used the original videos as evaluated by BlazeIt and further

encoded the videos to 480p for the low-resolution versions.

Model configuration and baselines. For Smol, we use the standard configurations of

ResNets (18, 34, and 50). We find that these models span a range of accuracy and speed

while only requiring training three models. We note that if further computational resources

are available at training time, further models could be explored.

Image datasets. For the image datasets, we use the following two baselines. First, we use

standard ResNets and vary their depths, specifically choosing 18, 34, and 50 as these are

the standard configurations [74]. We refer to this configuration as the naive baseline; the

naive baseline does not have access to other image formats. Second, we use Tahoma as

our other baseline, specifically a representative set of 8 models from Tahoma cascaded with

ResNet-50, our most accurate model. We choose 8 models due to the computational cost

of training these models, which can take up to thousands of GPU hours for the full set of

models. We use ROI decoding for Smol as these datasets use central crops.

Video datasets. We used the original BlazeIt code, which uses a “tiny ResNet” as the

specialized NN and a state-of-the-art Mask R-CNN [73] and FGFA [190] as target networks.

We replicate the exact experimental conditions of BlazeIt, except we use Smol’s optimized

runtime engine, which is substantially more efficient than BlazeIt.

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 126

Hardware environment. We use the AWS g4dn.xlarge instance type with a single

NVIDIA T4 GPU attached unless otherwise noted. The g4dn.xlarge has 4 vCPU cores with

15 GB of RAM. A vCPU is a hyperthread, so 4 vCPUs consists of 2 physical cores. Compute

intensive workloads, such as image decoding, will achieve sublinear scaling compared to a

single hyperthread. The g4dn.xlarge instance is approximately cost balanced between

vCPU cores and the accelerator.

g4dn.xlarge is optimized for DNN inference. Namely, the T4 GPU is significantly more

power efficient than GPUs designed for training, e.g., the V100. However, they achieve

lower throughput as a result; our results are more pronounced when using the V100 (e.g.,

using the p3.2xlarge instance). Our baselines use CPU decoding as a case study, as not all

visual formats are supported by hardware decoders, e.g., the popular HEIC (used by all new

iPhones) and WebP (used by Google Chrome) formats. Finally, we note that throughputs

can be converted to power or cost by using more vCPU cores, but we use a single hardware

environment for ease of comparison.

Further experiments. Due to limited space, we include experiments comparing Smol

to other frameworks in an extended version of this chapter [99].

Cost Models and Benchmarking Smol

We investigated the efficiency of pipelining in Smol and our choice of using min in cost

modeling (Section 4.2.3). We measured the throughput of Smol when only preprocessing,

only executing the DNN computational graph, and when pipelining both stages.

We first consider low-resolution images (JPEG q = 75) to ensure the system was under

full load. Preprocessing, DNN execution, and end-to-end inference achieve 5.9k, 4.2k, and

3.6k im/s respectively. Even at full load, Smol only incurs a 16% overhead compared to the

throughput predicted by its cost model. In contrast, Tahoma’s cost model would predict a

throughput of 2.5k im/s, a 30% error.

Furthermore, across all ResNet-50 configurations, Smol’s cost model (i.e., min) achieves

the lowest error compared to other heuristics (i.e., DNN execution only and sum). Its average

error is 5.9%, compared to 217% (DNN execution only) and 23% (sum).

Image Analytics Experiments

End-to-end speedups. We evaluated Smol and baselines (Tahoma and standard

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 127

60

65

70

75
a) imagenet

70.0

72.5

75.0

77.5
b) birds-200Tahoma Naive SMOL

1000 2000 3000 4000

96.5

97.0

97.5

c) animals-10

1000 2000 3000 4000

99.2

99.4

99.6
d) bike-bird

0.0 0.2 0.4 0.6 0.8 1.0
Throughput (im/s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Figure 4.9: Throughput vs accuracy for the naive baseline, Tahoma, and Smol on the
four image datasets (Pareto frontier only). Smol can improve throughput by up to 5.9×
with no loss in accuracy.

ResNets on full resolution data) on the image datasets shown in Table 4.6.

We first investigated whether Smol outperforms baselines when all optimizations were

enabled. We plot in Figure 4.9 the Pareto frontier of baselines and Smol for different input

format and DNN configurations. As shown, Smol can improve throughput by up to 5.9×
with no loss in accuracy relative to ResNet-18 and up to 2.2× with no loss in accuracy

relative to ResNet-50. Furthermore, Smol can improve the Pareto frontier compared to all

baselines. Notably, Tahoma’s specialized models performs poorly on complex tasks and are

bottlenecked on image preprocessing.

Importantly, we see that the naive baselines (i.e., all ResNet depths) are bottlenecked

by preprocessing for all datasets. Any further optimizations to the DNN execution alone,

including model compression, will not improve end-to-end throughputs. The differences in

baseline throughputs are due to the native resolution and encoding of the original datasets:

birds-200 contains the largest average size of images. The throughput variation between

ResNets depths is due to noise; the variation is within margin of error.

While we show below that both low resolution data and preprocessing optimizations

contribute to high throughput, we see that Smol’s primary source of speedups depends

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 128

Format Acc (reg, 50) Acc (low-resol, 50) Acc (reg, 34) Acc (low-resol, 34)
Full resol 75.16% 57.72% 72.72% 64.76%
161, PNG 70.92% 75.00% 68.30% 72.50%
161, JPEG (q = 95) 68.93% 71.94% 66.92% 69.79%
161, JPEG (q = 75) 64.02% 63.23% 62.45% 62.45%

Table 4.7: Effect of training procedure and input format on accuracy for ResNet-50 and
ResNet-34 on imagenet. Smol can achieve an accuracy throughput trade-offs by changing
the input format, achieving no accuracy loss for easier datasets.

on the dataset. First, Smol can achieve the same or higher accuracy by simply using

low resolution data for some bike-bird and animals-10. Second, for imagenet, a fixed

model will result in slightly lower accuracy (≤ 1%) when using lossless image compression.

However, when using a larger model, Smol can recover accuracy.

Comparison against Tahoma. Tahoma underperforms the naive solution of using a

single, accurate DNN for preprocessing bound workloads. This is primarily due to overheads

in cascades, namely coalescing and further preprocessing operations. Specifically, Tahoma

cascades a small DNN into a larger DNN. These smaller DNNs are less accurate than the

larger DNNs and thus require many images to be passed through the cascade for higher

accuracy, especially on the more complex tasks. The images that are passed through must

be copied again and further resized if the input resolutions are different.

Effect of training procedure. We investigated the effect of the training procedure for

low-resolution input formats. We trained ResNet-50 on: 1) full resolution, 2) 161 short-side

PNG, 3) 161 short-side JPEG (q = 95), and 4) 161 short-side JPEG (q = 75).

We show the accuracy of these conditions in Table 4.7 for imagenet, our hardest dataset.

As shown, low-resolution aware training can nearly recover the accuracy of full resolution

data even on this difficult dataset. Low-resolution training can fully recovery accuracy on

bike-bird and animals-10.

Video Analytics Experiments

We evaluated Smol on the four video datasets described above. We used the exact ex-

perimental configuration from BlazeIt as the baseline, with the exception of executing

BlazeIt’s specialized NNs in Smol’s optimized runtime engine. Smol’s runtime engine is

substantially more efficient that BlazeIt’s.

As shown in Figure 4.10, Smol can improve throughput by up to 2.5× at a fixed error

CHAPTER 4. GENERATING PROXY SCORES EFFICIENTLY 129

2500

5000

7500

10000

Ti
m

e

a) taipei

SMOL
BlazeIt

1000

2000

3000

4000

b) night-street

0.01 0.02 0.03 0.04 0.05

Error (absolute)

1000

2000

3000

4000

5000

Ti
m

e

c) amsterdam

0.01 0.02 0.03 0.04 0.05

Error (absolute)

0

5000

10000

15000

20000

d) venice-rialto

Figure 4.10: Query execution time vs requested error for BlazeIt and Smol on the four
video datasets we evaluated. As shown, Smol consistently outperforms BlazeIt by using
more accurate specialized NNs, which reduces sampling variance, and lower resolution data,
which reduces preprocessing costs.

level. Furthermore, Smol outperforms BlazeIt in all settings. Smol’s primary speedups

for night-street and rialto come from more accurate, but more expensive specialized

NNs. Despite the specialized NNs being more expensive, they reduce sampling variance

more, as they are more accurate. As a result, fewer samples are necessary for a fixed error

target. Smol’s primary speedups for taipei and amsterdam come from leveraging low

resolution video, as it is cheaper to preprocess.

4.2.7 Discussion

In this Section, we show that preprocessing can be the bottleneck in end-to-end DNN infer-

ence. We show that the preprocessing costs are accounted for incorrectly in cost models for

selecting models in visual analytics applications. To address these issues, we build Smol,

an optimizing runtime engine for end-to-end DNN inference. Smol contains two novel op-

timization for end-to-end DNN inference: 1) an improved cost model for estimating DNN

throughput and 2) joint optimizations for preprocessing and DNN execution that leverage

low-resolution data. We evaluate Smol and these optimizations and show that Smol can

achieve up to 5.9× improved throughput on end-to-end DNN inference.

Chapter 5

Specifying Errors in ML Deployments

All of the methods we have discussed in the previous two chapters rely on an accurate target

model. Unfortunately, as we discuss in Chapter 1, ML models can be unreliable, returning

inaccurate results. These inaccurate results can degrade the accuracy of unstructured data

queries relative to the ground truth.

Beyond causing errors in analytics, errors in ML models can have cascading consequences

in other deployments. For example, errors in ML models have already cause fatal au-

tonomous vehicle accidents [171]. As a result, it is critical to find errors in these ML models

and their root causes.

To find these errors, I propose two abstractions for allowing domain experts to specify

when errors in ML models and the data used to train these models may be occurring.

The first abstraction I have developed, model assertions, allows users to manually specify

when errors may be occurring, These assertions can find errors with high precision and with

few lines of code. They can further be used to retrain models in a cost efficient manner.

The second abstraction I have developed, learned observation assertions (LOA), learns from

existing labels where errors in newly labeled data may occur. LOA can be used to find errors

with up to 2× higher precision than baselines.

5.1 Model Assertions

ML is increasingly deployed in complex contexts that require inference about the physical

world, from autonomous vehicles (AVs) to precision medicine. However, ML models can

misbehave in unexpected ways. For example, AVs have accelerated toward highway lane

130

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 131

dividers [116] and can rapidly change their classification of objects over time, causing erratic

behavior [39, 133]. As a result, quality assurance (QA) of models, including continuous

monitoring and improvement, is of paramount concern.

Unfortunately, performing QA for complex, real-world ML applications is challenging:

ML models fail for diverse and reasons unknown before deployment. Thus, existing solutions

that focus on verifying training, including formal verification [103], whitebox testing [140],

monitoring training metrics [151], and validating training code [136], only give guarantees

on a test set and perturbations thereof, so models can still fail on the huge volumes of

deployment data that are not part of the test set (e.g., billions of images per day in an AV

fleet). Validating input schemas [17, 143] does not work for applications with unstructured

inputs that lack meaningful schemas, e.g., images. Solutions that check whether model

performance remains consistent over time [17] only apply to deployments that have ground

truth labels, e.g., click-through rate prediction, but not to deployments that lack labels.

As a step towards more robust QA for complex ML applications, we have found that

ML developers can often specify systematic errors made by ML models: certain classes of

errors are repetitive and can be checked automatically, via code. For example, in developing

a video analytics engine, we noticed that object detection models can identify boxes of cars

that flicker rapidly in and out of the video (Figure 5.1), indicating some of the detections are

likely wrong. Likewise, our contacts at an AV company reported that LIDAR and camera

models sometimes disagree. While seemingly simple, similar errors were involved with a

fatal AV crash [133]. These systematic errors can arise for diverse reasons, including domain

shift between training and deployment data (e.g., still images vs. video), incomplete training

data (e.g., no instances of snow-covered cars), and noisy inputs.

To leverage the systematic nature of these errors, we propose model assertions, an ab-

straction to monitor and improve ML model quality. Model assertions are inspired by

program assertions [61, 168], one of the most common ways to monitor software. A model

assertion is an arbitrary function over a model’s input and output that returns a Boolean

(0 or 1) or continuous (floating point) severity score to indicate when faults may be occur-

ring. For example, a model assertion that checks whether an object flickers in and out of

video could return a Boolean value over each frame or the number of objects that flicker.

While assertions may not offer a complete specification of correctness, we have found that

assertions are easy to specify in many domains (Section 5.1.1).

We explore several ways to use model assertions, both at runtime and training time.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 132

(a) Frame 1, SSD (b) Frame 2, SSD (c) Frame 3, SSD

(d) Frame 1, SSD (e) Frame 2, assertion corrected (f) Frame 3, SSD

Figure 5.1: Top row: example of flickering in three consecutive frames of a video. The
object detection method, SSD [120], failed to identify the car in the second frame. Bottom
row: example of correcting the output of a model. The car bounding box in the second
frame can be inferred using nearby frames based on a consistency assertion.

First, we show that model assertions can be used for runtime monitoring: they can be

used to log unexpected behavior or automatically trigger corrective actions, e.g., shutting

down an autopilot. Furthermore, model assertions can often find high confidence errors,

where the model has high certainty in an erroneous output; these errors are problematic

because prior uncertainty-based monitoring would not flag these errors. Additionally, and

perhaps surprisingly, we have found that many groups are also interested in validating

human-generated labels, which can be done using model assertions.

Second, we show that assertions can be used for active learning, in which data is

continuously collected to improve ML models. Traditional active learning algorithms select

data to label based on uncertainty, with the intuition that “harder” data where the model is

uncertain will be more informative [42, 158]. Model assertions provide another natural way

to find “hard” examples. However, using assertions in active learning presents a challenge:

how should the active learning algorithm select between data when several assertions are

used? A data point can be flagged by multiple assertions or a single assertion can flag

multiple data points, in contrast to a single uncertainty metric. To address this challenge,

we present a novel bandit-based active learning algorithm (BAL). Given a set of data that

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 133

have been flagged by potentially multiple model assertions, our bandit algorithm uses the

assertions’ severity scores as context (i.e., features) and maximizes the marginal reduction

in the number of assertions fired (Section 5.1.2). We show that our bandit algorithm can

reduce labeling costs by up to 40% over traditional uncertainty-based methods.

Third, we show that assertions can be used forweak supervision [128, 147]. We propose

an API for writing consistency assertions about how attributes of a model’s output should

relate that can also provide weak labels for training. Consistency assertions specify that

data should be consistent between attributes and identifiers, e.g., a TV news host (identifier)

should have consistent gender (attribute), or that certain predictions should (or should not)

exist in temporally related outputs, e.g., cars in adjacent video frames (Figure 5.1). We

demonstrate that this API can apply to a range of domains, including medical classification

and TV news analytics. These weak labels can be used to improve relative model quality

by up to 46% with no additional human labeling.

We implement model assertions in a Python library, OMG1, that can be used with

existing ML frameworks. We evaluate assertions on four ML applications: understanding TV

news, AVs, video analytics, and classifying medical readings. We implement assertions for

systematic errors reported by ML users in these domains, including checking for consistency

between sensors, domain knowledge about object locations in videos, and medical knowledge

about heart patterns. Across these domains, we find that model assertions we consider can

be written with at most 60 lines of code and with 88-100% precision, that these assertions

often find high-confidence errors (e.g., top 90th percentile by confidence), and that our new

algorithms for active learning and weak supervision via assertions improve model quality

over existing methods.

In the remainder of this section, we describe OMG’s API, using OMG with active

learning, using OMG with weak supervision, and our evalutaion of OMG.

5.1.1 Model Assertions

We describe the model assertion interface, examples of model assertions, how model asser-

tions can integrate into the ML development/deployment cycle, and its implementation.
1OMG is a recursive acronym for OMG Model Guardian.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 134

Model Assertions Interface

Model assertions are arbitrary functions that can indicate when an error is likely to have

occurred. They take as input a list of inputs and outputs from one or more ML models.

They return a severity score, a continuous value that indicates the severity of an error of

a specific type. By convention, the 0 value represents an abstention. Boolean values can

be implemented in model assertions by only returning 0 and 1. The severity score does not

need to be calibrated, as our algorithms only use the relative ordering of scores.

As a concrete example, consider an AV with a LIDAR sensor and camera and object

detection models for each sensor. To check that these models agree, a developer may write:

def sensor_agreement(lidar_boxes , camera_boxes):
failures = 0
for lidar_box in lidar_boxes:

if no_overlap(lidar_box , camera_boxes):
failures += 1

return failures

Notably, our library OMG can register arbitrary Python functions as model assertions.

Example Use Cases and Assertions

In this section, we provide use cases for model assertions that arose in discussions with

industry and academic contacts, including AV companies and academic labs. We show

example of errors caught by the model assertions described in this section in and describe

how one might look for assertions in other domains in an extended version of this work [101].

Our discussions revealed two key properties in real-world ML systems. First, ML models

are deployed on orders of magnitude more data than can reasonably be labeled, so a labeled

sample cannot capture all deployment conditions. For example, the fleet of Tesla vehicles

will see over 100× more images in a day than in the largest existing image dataset [162].

Second, complex ML deployments are developed by large teams, of which some developers

may not have the ability to manage all parts of the application. As a result, it is critical to

be able to do QA collaboratively to cover the application end-to-end.

Analyzing TV news. We spoke to a research lab studying bias in media via automatic

analysis. This lab collected over 10 years of TV news (billions of frames) and executed face

detection every three seconds. These detections are subsequently used to identify the faces,

detect gender, and classify hair color using ML models. Currently, the researchers have no

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 135

method of identifying errors and manually inspect data. However, they additionally compute

scene cuts. Given that most TV new hosts do not move much between scenes, we can assert

that the identity, gender, and hair color of faces that highly overlap within the same scene

are consistent [101]. We further describe how model assertions can be implemented via our

consistency API for TV news in Section 5.1.3.

Autonomous vehicles (AVs). AVs are required to execute a variety of tasks, including

detecting objects and tracking lane markings. These tasks are accomplished with ML models

from different sensors, such as visual, LIDAR, or ultrasound sensors [46]. For example, a

vision model might be used to detect objects in video and a point cloud model might be

used to do 3D object detection.

Our contacts at an AV company noticed that models from video and point clouds can

disagree. We implemented a model assertion that projects the 3D boxes onto the 2D camera

plane to check for consistency. If the assertion triggers, then at least one of the sensors

returned an incorrect answer.

Video analytics. Many modern, academic video analytics systems use an object detection

method [30, 83, 86, 93, 94, 181] trained on MS-COCO [119], a corpus of still images. These

still image object detection methods are deployed on video for detecting objects. None of

these systems aim to detect errors, even though errors can affect analytics results.

In developing such systems, we noticed that objects flicker in and out of the video

(Figure 5.1) and that vehicles overlap in unrealistic ways [101]. We implemented assertions

to detect these.

Medical classification. Deep learning researchers have created deep networks that can

outperform cardiologists for classifying atrial fibrillation (AF, a form of heart condition) from

single-lead ECG data [146]. Our researcher contacts mentioned that AF predictions from

DNNs can rapidly oscillate. The European Society of Cardiology guidelines for detecting AF

require at least 30 seconds of signal before calling a detection [53]. Thus, predictions should

not rapidly switch between two states. A developer could specify this model assertion, which

could be implemented to monitor ECG classification deployments.

Using Model Assertions for QA

We describe how model assertions can be integrated with ML development and deployment

pipelines. Importantly, model assertions are complementary to a range of other ML QA

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 136

Data collection
and labeling

Model development,
training

Assertion-based data collection
for active learning/weak

supervision (OMG)
Model assertion

runtime library (OMG)

Fuzzing
(TensorFuzz)

Verification, robust
ML (DeepXplore) Held-out set

Statistical
validation

Deployment and
monitoring

ML developers

Assertion database

Figure 5.2: System diagram of how model assertions can integrate into the ML develop-
ment/deployment pipeline. Users can collaboratively add to an assertion database. We also
show how related work can be integrated into the pipeline.

techniques, including verification, fuzzing, and statistical techniques, as shown in Figure 5.2.

First, model assertions can be used for monitoring and validating all parts of the ML

development/deployment pipeline. Namely, model assertions are agnostic to the source of

the output, whether they be ML models or human labelers. Perhaps surprisingly, we have

found several groups to also be interested in monitoring human label quality. Thus, con-

cretely, model assertions can be used to validate human labels (data collection) or historical

data (validation), and to monitor deployments (e.g., to populate dashboards).

Second, model assertions can be used at training time to select which data points to

label in active learning. We describe BAL, our algorithm for data selection, in Section 5.1.2.

Third, model assertions can be used to generate weak labels to further train ML models

without additional human labels. We describe how OMG accomplishes this via consistency

assertions in Section 5.1.3. Users can also register their own weak supervision rules.

Implementing Model Assertions in OMG

We implement a prototype library for model assertions, OMG, that works with existing ML

training and deployment frameworks. We briefly describe OMG’s implementation.

OMG logs user-defined assertions as callbacks. The simplest way to add an assertion is

through AddAssertion(func), where func is a function of the inputs and outputs (see below).

OMG also provides an API to add consistency assertions as described in §5.1.3. Given this

database, OMG requires a callback after model execution that takes the model’s input and

output as input. Given the model’s input and output, OMG will execute the assertions

and record any errors. We assume the assertion signature is similar to the following; this

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 137

assertion signature is for the example in Figure 5.1:

def flickering(recent_frames: List[PixelBuf],
recent_outputs: List[BoundingBox]) -> Float

For active learning, OMG will take a batch of data and return indices for which data

points to label. For weak supervision, OMG will take data and return weak labels where

valid. Users can specify weak labeling functions associated with assertions to help with this.

In the following two sections, we describe two key methods that OMG uses to improve

model quality: BAL for active learning and consistency assertions for weak supervision.

5.1.2 Using Model Assertions for Active Learning with BAL

We introduce an algorithm, BAL, to select data for active learning via model assertions.

BAL assumes that a set of data points has been collected and a subset will be labeled in

bulk. We found that labeling services [4] and our industrial contacts label data in bulk.

Given a set of data points that triggered model assertions, OMG must select which

points to label. There are two key challenges which make data selection intractable in its

full generality. First, we do not know the marginal utility of selecting a data point to label

without labeling the data point. Second, even with labels, estimating the marginal gain of

data points is expensive to compute as training modern ML models is expensive.

To address these issues, we make simplifying assumptions. We describe the statistical

model we assume, the resource-unconstrained algorithm, our simplifying assumptions, and

BAL. We note that, while the resource-unconstrained algorithm can produce statistical

guarantees, BAL does not. We instead empirically verify its performance in Section 5.1.4.

Data selection as multi-armed bandits. We cast the data selection problem as a

multi-armed bandit (MAB) problem [14, 21]. In MABs, a set of “arms” (i.e., individual data

points) is provided and the user must select a set of arms (i.e., points to label) to achieve the

maximal expected utility (e.g., maximize validation accuracy, minimize number of assertions

that fire). MABs have been studied in a wide variety of settings [27, 123, 145], but we assume

that the arms have context associated with them (i.e., severity scores from model assertions)

and give submodular rewards (defined below). The rewards are possibly time-varying. We

further assume there is an (unknown) smoothness parameter that determines the similarity

between arms of similar contexts (formally, the α in the Hölder condition [55]). The following

presentation is inspired by Chen et al. [33].

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 138

Concretely, we assume the data will be labeled in T rounds and denote the rounds

t = 1, ..., T . We refer to the set of n data points as N = {1, ..., n}. Each data point has a

d dimensional feature vector associated with it, where d is the number of model assertions.

We refer to the feature vector as xti, where i is the data point index and t is the round

index; from here, we will refer to the data points as xti. Each entry in a feature vector is

the severity score from a model assertion. The feature vectors can change over time as the

model predictions, and therefore assertions, change over the course of training.

We assume there is a budget on the number of arms (i.e., data points to label), Bt,

at every round. The user must select a set of arms St = {xs1 , ..., xsBt} such that |St| ≤
Bt. We assume that the reward from the arms, R(St), is submodular in St. Intuitively,

submodularity implies diminishing marginal returns: adding the 100th data point will not

improve the reward as much as adding the 10th data point. Formally, we first define the

marginal gain of adding an extra arm:

∆R({m}, A) = R(A ∪ {m})−R(A). (5.1)

where A ⊂ N is a subset of arms and m ∈ N is an additional arm such that m 6∈ A. The

submodularity condition states that, for any A ⊂ C ⊂ N and m 6∈ C

∆R({m}, A) ≥ ∆R({m}, C). (5.2)

Resource-unconstrained algorithm. Assuming an infinite labeling and computational

budget, we describe an algorithm that selects data points to train on. If we assume that

rewards for individual arms can be queried, then a recent bandit algorithm (CC-MAB [33])

can achieve a regret of O(cT
2αd
3αd log(T)) for α to be the smoothness parameter. Briefly,

CC-MAB explores under-explored arms until it is confident that certain arms have highest

reward. Then, it greedily takes the highest reward arms. Full details are given in [33].

Unfortunately, CC-MAB requires access to an estimate of selecting a single arm. Es-

timating the gain of a single arm requires a label and requires retraining and reevaluating

the model, which is computationally infeasible for expensive-to-train ML models, especially

modern deep networks.

Resource-constrained algorithm. We make simplifying assumptions and use these to

modify CC-MAB for the resource-constrained setting. Our simplifying assumptions are that

1) data points with similar contexts (i.e., xti) are interchangeable, 2) data points with higher

severity scores have higher expected marginal gain, and 3) reducing the number of triggered

assertions will increase accuracy.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 139

Under these assumptions, we do not require an estimate of the marginal reward for

each arm. Instead, we can approximate the marginal gain from selecting arms with similar

contexts by the total number of these arms that were selected. This has two benefits. First,

we can train a model on a set of arms (i.e., data points) in batches instead of adding single

arms at a time. Second, we can select data points of similar contexts at random, without

having to compute its marginal gain.

Leveraging these assumptions, we can simplify CC-MAB to require less computation for

training models and to not require labels for all data points. Briefly, we approximate the

marginal gain of selecting batches of arms and select arms proportional to the marginal

gain. We additionally allocate 25% of the budget in each round to randomly sample arms

that triggered different model assertions, uniformly; this is inspired by ε-greedy algorithms

[167]. This ensures that no contexts (i.e., model assertions) are underexplored as training

progresses. Finally, in some cases (e.g., with noisy assertions), it may not be possible to

reduce the number of assertions that fire. In this case, BAL will default to random sampling

or uncertainty sampling, as specified by the user.

5.1.3 Consistency Assertions and Weak Supervision

Although developers can write arbitrary Python functions as model assertions, we found that

many assertions can be specified using an even simpler, high-level abstraction that we called

consistency assertions. This interface allows OMG to generate multiple model assertions

from a high-level description of the model’s output, as well as automatic correction rules

that propose new labels for data that fail the assertion to enable weak supervision.

The key idea of consistency assertions is to specify which attributes of a model’s output

are expected to match across many invocations to the model. For example, consider a TV

news application that tries to locate faces in TV footage and then identify their name and

gender (one of the real-world applications we discussed in Section 5.1.1). The ML developer

may wish to assert that, within each video, each person should consistently be assigned the

same gender, and should appear on the screen at similar positions on most nearby frames.

Consistency assertions let developers specify such requirements by providing two functions:

• An identification function that returns an identifier for each model output. For exam-

ple, this could be the person’s name as identified by the model.

• An attributes function that returns a list of named attributes expected to be consistent

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 140

for each identifier. This could return the gender attribute.

Given these two functions, OMG generates multiple Boolean assertions that check

whether the various attributes of outputs with a common identifier match. In addition,

it generates correction rules that can replace an inconsistent attribute with a guess at that

attribute’s value based on other instances of the identifier (we simply use the most common

value). By running the model and these generated assertions over unlabeled data, OMG

can thus automatically generate weak labels for data points that do not satisfy the consis-

tency assertions. Notably, OMG provides another way of producing labels for training that

is complementary to human-generated labels and other sources of weak labels. OMG is

especially suited for unstructured sources, e.g., video. We show in Section 5.1.4 that these

weak labels can automatically increase model quality.

API Details

The consistency assertions API supports ML applications that run over multiple inputs xi
and produce zero or more outputs yi,j for each input. For example, each output could be

an object detected in a video frame. The user provides two functions over outputs yi,j :

• Id(yi,j) returns an identifier for the output yi,j , which is simply an opaque value.

• Attrs(yi,j) returns zero or more attributes for the output yi,j , which are key-value pairs.

In addition to checking attributes, we found that many applications also expect their

identifiers to appear in a “temporally consistent” fashion, where objects do not disappear

and reappear too quickly. For example, one would expect cars identified in the video to

stay on the screen for multiple frames instead of “flickering” in and out in most cases.

To express this expectation, developers can provide a temporal consistency threshold, T ,

which specifies that each identifier should not appear or disappear for intervals less than

T seconds. For example, we might set T to one second for TV footage that frequently

cuts across frames, or 30 seconds for an activity classification algorithm that distinguishes

between walking and biking. The full API for adding a consistency assertion is therefore

AddConsistencyAssertion(Id, Attrs, T).

Examples. We briefly describe how one can use consistency assertions in several ML tasks

motivated in Section 5.1.1:

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 141

Face identification in TV footage: This application uses multiple ML models to detect

faces in images, match them to identities, classify their gender, and classifier their hair color.

We can use the detected identity as our Id function and gender/hair color as attributes.

Video analytics for traffic cameras: This application aims to detect vehicles in video

street traffic, and suffers from problems such as flickering or changing classifications for an

object. The model’s output is bounding boxes with classes on each frame. Because we lack

a globally unique identifier (e.g., license plate number) for each object, we can assign a new

identifier for each box that appears and assign the same identifier as it persists through the

video. We can treat the class as an attribute and set T as well to detect flickering.

Heart rhythm classification from ECGs: In this application, domain experts informed us

that atrial fibrillation heart rhythms need to persist for at least 30 seconds to be considered

a problem. We used the detected class as our identifier and set T to 30 seconds.

Generating Assertions and Labels from the API

Given the Id, Attrs, and T values, OMG automatically generates Boolean assertions to

check for matching attributes and to check that when an identifier appears in the data, it

persists for at least T seconds. These assertions are treated the same as user-provided ones

in the rest of the system.

OMG also automatically generates corrective rules that propose a new label for outputs

that do not match their identifier’s other outputs on an attribute. The default behavior is

to propose the most common value of that attribute (e.g., the class detected for an object

on most frames), but users can also provide a WeakLabel function to suggest an alternative

based on all of that object’s outputs.

For temporal consistency constraints via T , OMG will assert that at most one transition

can occur within a T -second window; this can be overridden. For example, an identifier

appearing is valid, but an identifier appearing, disappearing, then appearing is invalid. If

a violation occurs, OMG will propose to remove, modify, or add predictions. In the latter

case, OMG needs to know how to generate an expected output on an input where the object

was not identified (e.g., frames where the object flickered out in Figure 5.1). OMG requires

the user to provide a WeakLabel function to cover this case, since it may require domain

specific logic, e.g., averaging the locations of the object on nearby video frames.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 142

Task Model Assertions
TV news Custom Consistency (§5.1.3, news)
Object detection (video) SSD [120] Three vehicles should not highly over-

lap (multibox), identity consistency as-
sertions (flicker and appear)

Vehicle detection (AVs) Second [182], SSD Agreement of Point cloud and image de-
tections (agree), multibox

AF classification ResNet [146] Consistency assertion within a 30s time
window (ECG)

Table 5.1: A summary of tasks, models, and assertions used in our evaluation.

5.1.4 Evaluation

Experimental Setup

We evaluated OMG and model assertions on four diverse ML workloads based on real

industrial and academic use-cases: analyzing TV news, video analytics, autonomous vehicles,

and medical classification. For each domain, we describe the task, dataset, model, training

procedure, and assertions. A summary is given in Table 5.1.

TV news. Our contacts analyzing TV news provided us 50 hour-long segments that were

known to be problematic. They further provided pre-computed boxes of faces, identities, and

hair colors; this data was computed from a range of models and sources, including hand-

labeling, weak labels, and custom classifiers. We implemented the consistency assertions

described in Section 5.1.3. We were unable to access the training code for this domain so

were unable to perform retraining experiments for this domain.

Video analytics. Many modern video analytics systems use object detection as a core

primitive [30, 83, 86, 93, 94, 181], in which the task is to localize and classify the objects

in a frame of video. We focus on the object detection portion of these systems. We used a

ResNet-34 SSD [120] (henceforth SSD) model pretrained on MS-COCO [119]. We deployed

SSD for detecting vehicles in the night-street (i.e., jackson) video that is commonly used

[30, 83, 94, 181]. We used a separate day of video for training and testing.

We deployed three model assertions: multibox, flicker, and appear. The multibox

assertion fires when three boxes highly overlap. The flicker and appear assertions are

implemented with our consistency API as described in Section 5.1.3.

Autonomous vehicles. We studied the problem of object detection for autonomous

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 143

vehicles using the NuScenes dataset [29], which contains labeled LIDAR point clouds and

associated visual images. We split the data into separate train, unlabeled, and test splits.

We detected vehicles only. We use the open-source Second model with PointPillars [114, 182]

for LIDAR detections and SSD for visual detections. We improve SSD via active learning

and weak supervision in our experiments.

As NuScenes contains time-aligned point clouds and images, we deployed a custom asser-

tion for 2D and 3D boxes agreeing, and the multibox assertion. We deployed a custom weak

supervision rule that imputed boxes from the 3D predictions. While other assertions could

have been deployed (e.g., flicker), we found that the dataset was not sampled frequently

enough (at 2 Hz) for these assertions.

Medical classification. We studied the problem of classifying atrial fibrillation (AF)

via ECG signals. We used a convolutional network that was shown to outperform cardi-

ologists [146]. Unfortunately, the full dataset used in [146] is not publicly available, so we

used the CINC17 dataset [1]. CINC17 contains 8,528 data points that we split into train,

validation, unlabeled, and test splits.

We consulted with medical researchers and deployed an assertion that asserts that the

classification should not change between two classes in under a 30 second time period (i.e.,

the assertion fires when the classification changes from A→ B → A within 30 seconds), as

described in Section 5.1.3.

Model Assertions can be Written with High Precision, Few LOC

We first asked whether model assertions could be written succinctly. To test this, we imple-

mented the model assertions described above and counted the lines of code (LOC) necessary

for each assertion. We count the LOC for the identity and attribute functions for the consis-

tency assertions (see Table 5.1 for a summary of assertions). We counted the LOC with and

without the shared helper functions (e.g., computing box overlap); we double counted the

helper functions when used between assertions. As we show in Table 5.2, both consistency

and domain-specific assertions can be written in under 25 LOC excluding shared helper

functions and under 60 LOC when including helper functions. Thus, model assertions can

be written with few LOC.

We then asked whether model assertions could be written with high precision. To test

this, we randomly sampled 50 data points that triggered each assertion and manually checked

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 144

Assertion LOC (no helpers) LOC (inc. helpers)
news 7 39
ECG 23 50
flicker 18 60
appear 18 35
multibox 14 28
agree 11 28

Table 5.2: Number of lines of code (LOC) for each assertion. All assertions could be
written in under 60 LOC including helper functions. The assertion main body could be
written in under 25 LOC in all cases.

Assertion Precision (identifier and output) Precision (model output only)
news 100% 100%
ECG 100% 100%
flicker 100% 96%
appear 100% 88%
multibox N/A 100%
agree N/A 98%

Table 5.3: Precision of model assertions deployed on 50 randomly selected examples. Model
assertions can be written with 88-100% precision across all domains.

whether that data point had an incorrect output from the ML model. The consistency

assertions return clusters of data points (e.g., appear) and we report the precision for errors

in both the identifier and ML model outputs and only the ML model outputs. As we show

in Table 5.3, model assertions achieve at least 88% precision in all cases.

Model Assertions can Identify High-Confidence Errors

We asked whether model assertions can identify high-confidence errors, or errors where the

model returns the wrong output with high confidence. High-confidence errors are important

to identify as confidence is used in downstream tasks, such as analytics queries and actuation

decisions [35, 83, 93, 94]. Furthermore, sampling solutions that are based on confidence

would be unable to identify these errors.

To determine whether model assertions could identify high confidence errors, we collected

the 10 data points with highest confidence error for each of the model assertions deployed

for video analytics. We then plotted the percentile of the confidence among all the boxes

for each error.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 145

1 2 3 4 5 6 7 8 9 10
Rank

50

60

70

80

90

Pe
rc

en
til

e
Appear
Multibox
Flicker

Figure 5.3: Percentile of confidence of the top-10 ranked errors by confidence found by
OMG for video analytics. The x-axis is the rank of the errors caught by model assertions,
ordered by rank. The y-axis is the percentile of confidence among all the boxes. Mdel
assertions can find errors where the original model has high confidence (94th percentile).

As shown in Figure 5.3, model assertions can identify errors within the top 94th percentile

of boxes by confidence (the flicker confidences were from the average of the surrounding

boxes). Importantly, uncertainty-based methods of monitoring would not catch these errors.

We further show that model assertions can identify errors in human labels, which effec-

tively have a confidence of 1. These results are shown in Kang et al. [101].

Model Assertions can Improve Model Quality via Active Learning

We evaluated OMG’s active learning capabilities and BAL using the three domains for

which we had access to the training code (visual analytics, ECG, AVs).

We asked whether multiple model assertions can improve model quality via continuous

data collection. We deployed three assertions over night-street and two assertions for

NuScenes. We used random sampling, uncertainty sampling with “least confident” [158],

uniform sampling assertions, and BAL for the active learning strategies. We used the mAP

metric for both datasets, which is widely used for object detection [73, 119]. We defer

hyperparmeters to Kang et al. [101].

As we show in Figure 5.4, BAL outperforms both random sampling and uncertainty

sampling on both datasets after the first round, which is required for calibration. BAL also

outperforms uniform sampling from model assertions by the last round. For night-street, at

a fixed accuracy threshold of 62%, BAL uses 40% fewer labels than random and uncertainty

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 146

2 3 4 5
Round

59

60

61

62

63

64

m
AP Random

Uncertainty
Uniform MA
BAL

(a) Active learning for night-street.

2 3 4 5
Round

12

13

14

15

16

m
AP

Random
Uncertainty
Uniform MA
BAL

(b) Active learning for NuScenes.

Figure 5.4: Performance of random sampling, uncertainty sampling, uniform sampling
from model assertions, and BAL for active learning. BAL improves accuracy on unseen
data and can achieve an accuracy target (62% mAP) with 40% fewer labels compared to
random and uncertainty sampling for night-street. BAL also outperforms both baselines
for the NuScenes dataset.

sampling. By the fifth round, BAL outperforms both random sampling and uncertainty

sampling by 1.5% mAP. While the absolute change in mAP may seem small, doubling

the model depth, which doubles the computational budget, on MS-COCO achieves a 1.7%

improvement in mAP (ResNet-50 FPN vs. ResNet-101 FPN) [60].

These results are expected, as prior work has shown that uncertainty sampling can be

unsuited for deep networks [156].

Model Assertions can Improve Model Quality via Weak Supervision

We used our consistency assertions to evaluate the impact of weak supervision using asser-

tions for the domains we had weak labels for (video analytics, AVs, and ECG).

For night-street, we used 1,000 additional frames with 750 frames that triggered flicker

and 250 random frames with a learning rate of 5 × 10−6 for a total of 6 epochs. For the

NuScenes dataset, we used the same 350 scenes to bootstrap the LIDAR model as in the

active learning experiments. We trained with 175 scenes of weakly supervised data for one

epoch with a learning rate of 5×10−5. For the ECG dataset, we used 1,000 weak labels and

the same training procedure as in active learning.

Table 5.4 shows that model assertion-based weak supervision can improve relative per-

formance by 46.4% for video analytics and 33% for AVs. Similarly, the ECG classification

can also improve with no human-generated labels. These results show that model assertions

can be useful as a primitive for improving model quality with no additional data labeling.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 147

Domain Pretrained Weakly supervised
Video analytics (mAP) 34.4 49.9
AVs (mAP) 10.6 14.1
ECG (% accuracy) 70.7 72.1

Table 5.4: Accuracy of pretrained and weakly supervised models. Weak supervision can
improve accuracy with no human-generated labels.

5.1.5 Discussion

In this Section, we introduced model assertions, a model-agnostic technique that allows

domain experts to indicate errors in ML models. We showed that model assertions can be

used at runtime to detect high-confidence errors, which prior methods would not detect.

We proposed methods to use model assertions for active learning and weak supervision

to improve model quality. We implemented model assertions in a novel library, OMG,

and demonstrated that they can apply to a wide range of real-world ML tasks, improving

monitoring, active learning, and weak supervision for ML models.

5.2 Learned Observation Assertions

Machine learning (ML) is increasingly being deployed in complex applications with real-

world consequences. For example, ML models are being deployed to make predictions over

perception data in autonomous vehicles (AVs) [102], with potentially fatal consequences

for errors, such as striking pedestrians [171]. Thus, quality assurance and testing of ML

pipelines are of paramount concern [10, 136, 179, 184].

A critical component of ML deployments is the curation of high-quality training data, in

which crowd workers produce labels over data. Similar to how errors in tabular data results

in downstream errors in query results, erroneous training data (e.g., Figure 5.5) can lead to

subsequent safety repercussions for trained models. As such, finding these errors is critical,

which we focus on in this work.

Unfortunately, standard techniques in data cleaning are not well suited for finding errors

in training data. For example, while constraints work well on tabular data, they are less

suited for perception data, e.g., pixels of an image. As such, we have found it necessary to

develop new tools for finding errors in training data.

Recent work has proposed Model Assertions (MAs) that indicate when errors in ML

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 148

Figure 5.5: Example of human labels (orange) and missing labels (red) in the Lyft Per-
ception dataset. The black truck highlighted is within 25m of the AV. Such errors can cause
downstream issues with perception and planning systems.

model predictions or labels may be occurring [101]. MAs are black-box functions over

model inputs and outputs that return a quantitative severity score indicating when an ML

model or human-proposed label may have an error. For example, a MA may assert that

a prediction of a box of a car should not appear and disappear in subsequent frames of a

video. MAs can be used to monitor the ML models in deployment, and to flag problematic

data to label and retrain the model.

However, in our experience deploying MAs in a real-world AV perception training pipeline,

we have found several major challenges. First, users must manually specify MAs, which can

be challenging for complex ML deployments. Second, calibrating severity scores so that

higher severity scores indicate a higher chance of error is challenging. This is especially

important as organizations have limited resources to evaluate potential errors in ML models

or human labels. Third, ad-hoc methods of specifying severity scores ignores organizational

resources [163] that are already present: large amounts of ground-truth labels and existing

ML models.

To address these challenges, we propose a probabilistic domain-specific language (DSL),

Learned Observation Assertions (LOA), for specifying assertions, and methods for data-

driven specification of severity scores that leverage existing resources in ML deployments.

We implement LOA in a prototype system (Fixy), embedded in Python to easily integrate

with ML systems.

Our first contribution, LOA, allows users to specify properties of interest for perception

tasks. LOA contains three components: data associations, feature distributions, and appli-

cation objective functions. LOA can be used to specify assertions without ad-hoc code or

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 149

severity scores by automatically transforming the specification into a probabilistic graphical

model and scoring data components, producing statistically grounded severity scores.

In our labeling deployment, sensor data across short snippets of time (scenes) are sent

to vendors for labeling. These scenes are then audited for missing labels. These errors

are difficult to specify via ad-hoc MAs, so LOA supports associating observations together:

across observation sources (observation bundles, i.e., predictions from different ML models

or sensors) and across time (tracks, i.e., predictions of the same object over time). These

associated observations can then be considered jointly when searching for errors.

Our second contribution is methods of leveraging organizational resources [163], i.e.,

existing labels and ML models, to automatically specify severity scores via LOA. Users

specify features over data, which are used to automatically generate feature distributions, and

application objective functions (AOFs) to guide the search for errors. Feature distributions

take sets of observations and output a probability of seeing a feature of the input. For

example, a feature distribution might take a 3D bounding box of a car and return the

likelihood of encountering that box volume. AOFs transform feature distribution values for

the application at hand. For example, if we wish to find likely tracks (e.g., a track missed

by human labels), the AOF could simply return the feature distributions’ value. If we wish

to find unlikely tracks (e.g., a “ghost” track that an ML model erroneously predicts), the

AOF could return one minus the feature distributions’ value.

We evaluate Fixy on two real-world AV datasets, the publicly available Lyft Level 5

perception dataset [104] as well as an internally collected dataset. Both datasets were

annotated by leading commercial labeling vendors. Despite best efforts from these vendors

[34], we find a number of labeling errors via Fixy, some of which could cause safety violations

(e.g., in Figures 5.5 and 5.12). Using LOA, we discovered errors in 70% of the scenes of

the Lyft Level 5 autonomous vehicle dataset, a popular autonomous vehicle dataset. We

further show that Fixy can achieve recalls of up to 75% when searching for errors in these

datasets, while achieving 2× higher precision for finding label error than hand-crafted MAs.

Furthermore, Fixy can find novel errors in ML models that the hand-crafted MAs in previous

work are unable to find, and finds high-confidence errors that uncertainty sampling misses.

In the remainder of this section, we describe LOA’s interface and how Fixy integrates

in the broader context of ML deployments, how Fixy automatically learns feature distribu-

tions, how Fixy scores assertions, and our evaluation of LOA.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 150

v1
LIDAR

v1
Scale

v2
LIDAR

v2
Scale

vN
LIDAR

vN
Scale

… Observation
bundle

Feature
distributionsp1 p2 b3 p4 p5

p1,2

(a) Schematic of a track that contains observations from LIDAR ML model predictions and from
human-proposed labels. We show examples of feature distributions for observations (p1, p2, p4, and
p5), bundles (b3), and transitions (p1,2).

(b) t = 1 (v1 model and
v1 human)

(c) t = 2 (v2 model and
v2 human)

(d) t = 3 (v3 model and
v3 human)

(e) t = 4 (v4 model and
v4 human)

Figure 5.6: Example of the factor graph (top) and corresponding LIDAR point cloud data
(bottom). The track is in black and other human-proposed labels are in orange for reference.

5.2.1 Example and Background

ML workflow. As an example, we describe the ML deployment pipeline for our AVs, fo-

cusing on labeling data for perception systems. Other organizations deploy similar pipelines,

e.g., as documented by Kaparthy [102].

Our AV deployment pipeline is a continuous process, in which ML models are trained,

tested, and deployed on vehicles. Because ML models are continuously exposed to new and

different scenarios, we continuously collect and label data, which is subsequently used to

develop and retrain ML models [17].

Label quality is of paramount concern: erroneous labels can lead to downstream errors,

which in turn can lead to safety violations. Vendors that provide labels are not always

accurate, which is in contrast to the large body of work that assumes datasets are “gold.”

For our perception system, the most egregious errors are when objects are entirely missed

in labeling. We show examples of missing labels in Figure 5.5, in which a truck and several

cars were missed by the human labeler.

To address label quality issues, our organization has expert auditors who audit the

vendor-provided labels. Unfortunately, it is too expensive to audit every data point, so we

have developed Fixy, which enables ranking datapoints that are likely to be erroneous and

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 151

allows better utilization of auditing resources.

Model assertions. MAs are user-provided, black box functions over ML model inputs

and outputs that indicate if the ML model has an error [101]. MAs can be deployed at test

time to indicate possible errors so corrective actions can be taken. They can additionally be

used to select data that produces errors for labeling, e.g., as studied by Kang et al. [101], as

many organizations continuously collect data to label.

Unfortunately, MAs are specified in an ad-hoc manner. They require users to write

programs to specify exactly what forms of errors occur and ad-hoc severity scores to indicate

the likelihood of an error. We have found that these ad-hoc procedures can be challenging

to use.

Factor graphs. Fixy generates graphical models from data and feature distributions.

We specifically consider factor graphs due to the ease of representing data and distributions

[111].

Given a set of random variables X = {X1, . . . , Xn}, a factor graph represents a fac-

torization of a joint distribution g(X1, . . . , Xn). Assume that the joint distribution can be

factorized in terms of a set of functions fj , which we will call factors, and Sj ⊆ X

g(X1, ..., Xn) =

m∏
j=1

fj(Sj). (5.3)

Formally, we can represent a factor graph as a graph G = (X,F,E), where X and F are

two disjoint sets of nodes. The graph is bipartite, meaning that each edge connects a node

in X to a node in F , but no edge connects nodes in X among themselves nor nodes in F

among themselves. For every factor fj ∈ F , there is an edge that connects it to Xi if and

only if Xi ∈ Sj in the factorization of g.

We consider specific factor graphs that are automatically generated by Fixy, as described

later in this chapter.

LIDAR. We extensively use and show LIDAR data and predictions over LIDAR data as

examples of missing human labels or ML model predictions. LIDAR is generated by pulsing

light and timing the returns of the pulsed light [173]. With accurate timings, LIDAR data

gives accurate distance measurements and are represented as point clouds. In this chapter,

we show birds-eye view of LIDAR data: concentric circles indicate same distances from

the LIDAR sensor and we draw predicted boxes over the scenes. We show an example

in Figure 5.6. LIDAR figures in white background are from the Lyft Level 5 perception

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 152

Features, AOFs
(e.g., velocity)

Associations
(e.g., IOU)

Fixy

Feature distribution
learning

Historical
data

Graphical model
generation Scoring

Ranked outputs

New data

Figure 5.7: System diagram for Fixy. Users provide features over perception data (e.g.,
box volume) and associations between observations. Given these inputs, Fixy will learn
feature distributions, generate graphical models, score new data, and output potential errors.

dataset [104] and figures in black background are from our internal dataset.

5.2.2 System Overview

Goals. Fixy aims to enable users to find errors in ML labeling pipelines and in ML

models, primarily in the form of missing labels. In particular, Fixy aims to reduce manual

effort by only requiring users to specify natural quantities (e.g., box volume, velocity) as

opposed to specifying the exact form of errors as model assertions expect users to do.

Inputs and outputs. We first denote human-proposed labels and ML model outputs

as “observations.” As input, Fixy takes a set of observations. As output, Fixy returns a

ranked list of (potentially a subset of) observations, where higher ranked observations are

ideally more likely to contain errors.

Offline, Fixy takes already-present labels to learn feature distributions over features of

the observations. Fixy will then use this data to rank potential errors.

Fixy components. Fixy consists of: a DSL for specifying relations between observations

and feature distributions, a component to learn feature distributions, a scoring component,

and a runtime engine. Fixy’s DSL allows users to specify how feature distributions and

observations interact. Its distribution learning component fits distributions over existing

observations. Its scoring component scores observations or groups of observations by likeli-

hood. Finally, its runtime engine ranks observations or groups of observations.

We show a system diagram in Figure 5.7. Users need only provide the features (and data

to be ranked). Once the feature distributions are learned, Fixy will rank potential errors

for auditing.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 153

Workflow. Fixy contains an offline (distribution learning) and online (error ranking)

phase. In the offline phase, Fixy will learn feature distributions from existing labels. In the

online phase, Fixy will rank potential errors.

We have found that users of label checking tools are often non-experts in coding and

ML tools, so we have opted for simplicity in LOA. Thus, a user of Fixy need only specify

features and optionally AOFs. In particular, many features are already computed for use in

other pipelines so can be reused (e.g., object volume, velocity, and distance from vehicle).

Thus, the features can be specified in few lines of code, as we show below.

Worked example. Consider the use case of finding missing human labels of 3D bounding

boxes over LIDAR point cloud data. For example, Figure 5.5 show several missing cars and

a missing truck.

In this example, we have two sources of observations: predictions from an ML model and

human labels. To find these errors, the user will: 1) associate observations and 2) specify

features. Then, Fixy will automatically score and rank potential errors.

The analyst first associates observations within a time step (i.e., overlapping model

predictions and human labels) and between adjacent timesteps (i.e., objects across time).

To do so, the user can specify that observations with high box overlap are associated. While

this is provided by default by Fixy, the user can also write a short amount of code using

the intersection over union (IOU):

class TrackBundler(Bundler):
def is_associated(self , box1 , box2):

return compute_iou(box1 , box2) > 0.5

The analyst then specifies features. As a concrete example, the analyst may specify a

feature that computes box volume. The user need only provide code to compute the box

volume: Fixy will learn distribution of box volumes and use it to find anomalous boxes.

KDEObsDistribution takes features and learns a
KDE density estimator over the features
class VolumeDistribution(KDEObsDistribution):

def feature(self , box):
vol = box.width * box.height * box.length
return vol

The user can also specify other features, such as object velocity. The two code snippets

above (and another other features the user wishes to specify) are all that a user need to

provide to Fixy.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 154

Given the associations between observations and the features, Fixy will learn the like-

lihood of encountering specific feature values offline, using already-collected resources.

Once these feature distributions are learned, Fixy will score and rank new data, ideally

with potential errors ranked higher. Concretely, consider Figure 5.5. Although not shown,

an ML model highlighted the truck in a time-consistent way. Since the track is highly

consistent, Fixy returns a high likelihood of an error. An expert auditor can then verify if

the potential error is actually a missing label.

5.2.3 Learned Observation Assertions

LOA provides a simple means of specifying associations between observations and specifying

associations between observations and feature distributions. Intuitively, applications that

contain observations over time and over multiple modalities/models may have observations

that are associated across time/modalities. Furthermore, feature distributions may operate

over individual observations or groups of observations. We show an example of a compiled

LOA graph and corresponding sensor data observations in Figure 5.6.

In this section, we provide a formal description of LOA. However, users interface with

LOA via a Python library. In particular, users only need to specify features over which distri-

butions are learned and methods of associating observations. Our implementation provides

class interfaces where users can override the feature computation (for the feature distribu-

tions) and the association method (for associating observations). We show an example in

Section 5.2.2 of the code the user needs to provide.

Overview

LOA contains elements for allowing users to specify how observations interact with each

other and how feature distributions interact with observations. Our implementation of

LOA is embedded in Python for ease of integration with standard ML packages. Since

perception data often contains spatial and temporal components, we allow users to construct

observation bundles within a single time step and tracks across time. We collectively refer

to observations, bundles, and tracks as OBTs. LOA then allows features to be specified

over any OBT. Finally, the user can specify application objective functions (AOFs) over any

feature distribution.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 155

Scene Syntax

Overview. We consider scenes of data, which consists of observations and features over

these observations. Our syntax consists of specifying how observations relate to each other

within a scene and how features relate to groups of observations.

Formalism. A scene consists of a set of tracks. Each track contains a set of observation

bundles. An observation bundle contains observations from different modalities, such as

LIDAR, vision, and for offline data, human proposals of labels. We summarize our syntax

notation in Table 5.5.

Formally, we denote the scene (i.e., set of tracks) as s = {τ}. Each track consists of an

indexed sequence of observation bundles, τ = (β0, . . . , βn). Each observation bundle consists

of a set of observations, β = {ωτ,β}.
In order to reason about erroneous or unusual artifacts in the perception system, we

define features over the elements of the scene. Users can assign features to any of the elements

of the scene; these assignments are often done automatically (e.g., a volume feature would

apply over every observation). Concretely, features can be over observations, observation

bundles, tracks, or entire scenes.

Formally, π, the feature function, maps each element to its features. For example, π(ωτ,β)

are the features assigned to the observation in track τ in bundle β, which could be a feature

on the volume of the object detected. Similarly, π(τ) assigns track τ its features, which

could be the total number of observations within that track.

In addition to features over discrete groups of observations, we provide syntax for features

over adjacent observations within a track (“transition features”), i.e., π(βi, βi+1). As a

concrete example, we have implemented a transition feature for the estimated instantaneous

velocity. We note that this syntax is for convenience, as it could be implemented via track

features. Nonetheless, we have found it useful in our applications to allow for transition

features.

Finally, AOFs can be specified over any feature distribution. These AOFs are numeric

transformations of the returned feature distribution score, e.g., the identity function, the

zero function, or f(x) = 1− x.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 156

Syntactic element Meaning
s Scene
τ Track
β Observation bundle
ω Observation
π Feature mapping function

Table 5.5: Table of syntactic elements in Fixy’s DSL.

Generating Graphical Models

Fixy will compile the scene, feature distributions, and AOFs to a graphical model, which is

used to score groups of observations. Fixy uses these scores to flag potential errors.

To compile a scene, Fixy will create nodes for each observation and feature distribution.

Then, Fixy will create edges between each feature distribution and the observation it applies

over. If a feature distribution applies to a single observation, Fixy will create a single edge.

If a feature distribution applies to a group of observations (e.g., an observation bundle or

track), Fixy will create one edge between each observation in the group and the feature

distribution.

Once the graphical model is constructed, Fixy can then score any OBT. Fixy will score

an observation by the negative log-likelihood implied by its feature distributions. The score

of a group of observations is the sum of the scores of the observations, normalized by the

number of feature distributions. We defer the full discussion of scoring and a worked example

to Section 5.2.5.

5.2.4 Feature Distributions

A key component to scoring OBTs are the feature distributions. Both our AV deployment

and other organizations deploying ML collect large amounts of training data. This training

data contains labels (potentially with errors), which can be used to fit empirical distributions

to the features. We leverage these existing labels in this work, as they come at no additional

cost.

To fit these feature distributions, Fixy takes as input scalar or vector valued features

over OBTs. For example, a feature over an observation may take a bounding box and return

the volume of the box as described in Section 5.2.2. The user may also manually specify

feature distributions to rank severity (e.g., distance of an object to the AV) or to filter

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 157

Figure 5.8: Example of a motorcycle (highlighted in red) missed by human proposals. We
show both the LIDAR point cloud data (top) and the camera view (bottom).

certain instances (e.g., only search for errors in detecting pedestrians). Finally, Fixy takes

an optional AOF, which can be applied per feature or over the resulting score.

We describe the feature types, their specification, and how Fixy fits them below.

Feature Types

Fixy contains features over OBTs and transitions. While transition features can be imple-

mented as track features, we provide a syntactic element for ease of use.

Fixy’s first feature type are features over single observations. Each feature is associated

with a specific observation type (e.g., a feature over a LIDAR model prediction). These

features are typically used to specify time-independent information over the predictions.

For example, a feature may take a 3D box prediction from a LIDAR model and return the

box volume. The observation feature would be over box volumes in this case.

Fixy’s second feature type are features over observation bundles. These features are

typically used to specify consistency between observations of the same object in a single

time step. For example, consider the intuition that observations within bundles should

agree on object class. To specify this, a user could provide a feature that returns 0 if all the

classes agree and 1 otherwise. The feature would then learn the Bernoulli probability of the

class agreement between observation types.

Fixy’s third feature type are features between observations or bundles in adjacent time

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 158

steps within a track. These features are typically used to specify information over time-

dependent quantities or consistency. For example, a feature could specify the velocity esti-

mated by box center offset.

Fixy’s fourth feature type are features over entire tracks. Although rare, these features

can be used to normalize scores over entire tracks.

Learning Feature Distributions

Given features, Fixy can automatically fit feature distributions over existing training datasets.

To fit feature distributions, Fixy takes a function that accepts a list of scalars/vectors and

returns a fitted distribution. By default, Fixy uses a kernel density estimator (KDE) to

learn feature distributions over the features. In some cases, other types of distributions are

appropriate (e.g., discrete distributions): the user can override our default KDE estimator

in these cases.

To learn feature distributions given a set of scenes, Fixy first exhaustively generates the

features over the data and collects the scalar or vector values. Then, for each feature, Fixy

executes the fitting function over the scalar/vector values.

The density estimators have hyperparameters. We have found that default hyperparam-

eters work in all cases we tried, so we defer exploring hyperparameters to future work.

Application Objective Functions

AOFs wrap data feature distributions to transform them into an application-specific prob-

abilities to guide the search for labeling errors. As such, they take scalar values and return

scalar values. The most common operations are taking the inverse and setting the proba-

bility to 0/1 under certain conditions. For example, when searching for likely tracks, the

application objective function may be the identity. In contrast, when searching for unlikely

tracks, the application objective function may invert the probability.

5.2.5 Scoring Relative Plausibility

Given the compiled factor graph, Fixy can score any OBT. Fixy will score the observations

via the sum of log likelihood of the feature distributions transformed by the application

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 159

objective functions. Formally, given the AOFs fi, the score for an observation ω is∑
πi∈π(ω)

ln (fi(πi(ω))) . (5.4)

The score of any component in the graph is the sum of the scores of the observations,

normalized by the total number of features that connect to the component. We normalize

by the number of features so that components of different sizes are comparable (e.g., a track

with 10 observations compared to a track with 100 observations).

Consider the missing truck in Figure 5.5 and suppose the ML model predicted it in two

adjacent time steps (t = 1, 2) for simplicity. Suppose the predicted box volumes are 44.8 m3

and 45.9 m3, and the predicted velocity was 2 m/s. In this case, the scores of the volumes

may be 0.37 and 0.39 respectively, and the score for the velocity may be 0.21. The score

for the track would be (ln(0.37) + ln(0.39) + ln(0.21))/3 = −1.17. Since Fixy only uses the

score to rank, this would be compared to other scores.

5.2.6 Applications

We provide examples of applying Fixy to finding different kinds of errors in ML applications.

For all applications, we assume that the predictions are 3D bounding boxes over LIDAR

point cloud data. We further assume access to two features: an observation feature over box

volume and a transition feature over estimated velocity.

Finding missing tracks. In this application, we are interested in finding tracks that

human proposals missed entirely. For example, Figure 5.8 shows a motorcycle close to the

AV but is only visible for a short period of time due to occlusion. It is important to find

such errors as this may cause ML models to misclassify motorcycles at deployment time.

To find such errors, we additionally execute a 3D bounding box prediction model over

the data. Given the ML model predictions, we associate ML model predictions and human

proposal in the same frame if they have high box overlap.

The AOF zeros out any track that contains any human proposals. The remaining tracks

contain only model predictions and are scored as usual, with the intuition that consistent

predictions from the model are likely to be correct. We show an example of a high probability

track (Figure 5.8) and low probability track (Figure 5.9).

Finding missing labels within tracks. We are interested in finding errors in labels

proposed by humans that should belong to an existing track. For example, Figure 5.10

shows a car trailing the AV, where the first frame is missing the car box.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 160

Figure 5.9: Example of an unlikely track. Predictions are inconsistent within a track,
suggesting that they are spurious.

Figure 5.10: Example of missing human label within a track that Fixy can find. The left
panel only contains an ML model prediction while the right contains both a human label
and an ML model prediction.

Figure 5.11: Example of a low probability bundle. The box of the person and truck highly
overlap, but are strongly inconsistent in box volume.

To find such errors, we use the 3D bounding box prediction model’s predictions. The

association of observations into bundles is done as above. The AOF zeros out the probability

of any bundle that contains a human proposal and any track that does not contain any

human proposals. Thus, the remaining bundles only contain ML model predictions and are

in tracks that contain at least one human proposal.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 161

The remaining bundles are scored as usual, with the intuition that predicted boxes that

produce high probability bundles are likely to be correct predictions. We show an example of

a high probability bundle (Figure 5.10) compared to a low probability bundle (Figure 5.11).

Finding erroneous ML model predictions. We are interested in finding erroneous ML

model predictions. As such, we assume there are no human proposals. We show an example

of an erroneous track in Figure 5.13, where the truck is inconsistently predicted.

The AOF inverts the probability of each feature, with the goal of inverting the ranking

of the tracks that are likely to be correct and the tracks that are likely to be incorrect.

5.2.7 Evaluation

We evaluated Fixy on whether it can find errors in ML pipelines. We show that Fixy can

find errors in human-proposed labels that are difficult to specify with ad-hoc MAs and novel

errors in ML model predictions that prior work cannot find.

Experimental Setup

Datasets. We evaluated Fixy on two AV perception datasets: an internal dataset from

our research organization and the publicly available Lyft Level 5 perception dataset [104].

The Lyft dataset has been used to develop models [189] and host competitions [160]. Both

datasets consists of many scenes of LIDAR and camera data that were densely labeled with

3D bounding boxes by leading external vendors for human labels (“human-proposed labels”).

We executed Fixy on 46 scenes from the Lyft dataset (the entire validation set, i.e., not

seen at training time) and 13 scenes from our internal dataset. Additionally, we asses the

recall of Fixy on a scene from our internal dataset that we vetted carefully.

The class labels, sampling rate, and physical sensor layout differ between the two datasets,

showing that Fixy can apply across dataset characteristics.

Observation sources. We used three sources of observations: human-proposed labels,

LIDAR model predictions [114, 189], and expert auditor labels. All sources predict 3D

bounding boxes. We focus on the common classes of car, truck, pedestrian, and motorcycle.

Features. We used the features shown in Table 5.6. These features consist of features

that were automatically learned from data (volume, velocity, count) in addition to features

for selecting more egregious errors (distance, model only).

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 162

Name Type Description
Volume Obs. Class-conditional box volume
Distance Obs. Distance to AV
Model only Bundle Selects bundles with model predictions only
Velocity Trans. Class-conditional object velocity
Count Track Filters tracks with two or fewer obs.

Table 5.6: Description of features we used in this evaluation. Model only and count were
manually specified features.

Baselines. We compared against manually designed ad-hoc MAs developed by Kang

et al. [101] and uncertainty sampling. The ad-hoc MAs were designed to find errors in

similar settings to ours, across both human-proposed labels and ML model predictions.

Uncertainty sampling is commonly used in active learning [158].

Users of Fixy are typically non-experts in coding and ML tools (Section 5.2.2). As such,

we focus on simple ad-hoc MAs (e.g., ones developed by Kang et al. [101]) and low-code

features in Fixy. Each feature required fewer than 6 lines of code to implement.

Both datasets were vetted by leading vendors for human labels. Thus, we find errors

that were not found in an external audit.

Fixy can Find Missing Tracks

We investigated whether Fixy could find errors in vendor-proposed labels. We searched for

tracks that were entirely missed by human proposals, as these errors are the most egregious.

Experimental setup. To find tracks entirely missed by human labelers, we associated

LIDAR observations and human observations by box overlap within the same frame and

associated observations within a track by box overlap across time. We further deployed the

features described above. For the ad-hoc MA baseline, we used the “consistency” assertion

as described by Kang et al. [101]. For comparison purposes, we ordered the ML model

predictions randomly and by model confidence.

We manually checked the top 10 potential errors as proposed by Fixy and ad-hoc model

assertions (in some cases, fewer than 10 potential errors were flagged; we use the maximum

number in these cases). We measured the precision among these potential errors, where a

higher precision indicates that there are more errors within the top 10 proposals. For the

Lyft dataset, we measured the precision across every scene in the validation set (i.e., data

that was not seen during model training) that we discovered errors. For our internal dataset,

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 163

Method Dataset Precision at top 10 Precision at top 5 Precision at top 1
Fixy Lyft 69% 70% 67%
Ad-hoc MA (rand) Lyft 32% 30% 24%
Ad-hoc MA (conf) Lyft 39% 40% 39%
Fixy Internal 76% 100% 100%
Ad-hoc MA (rand) Internal 49% 64% 66%
Ad-hoc MA (conf) Internal 71% 86% 66%

Table 5.7: Precision at top 10, 5, and 1 of Fixy and ad-hoc MA baselines for finding tracks
missed by humans. Fixy outperforms baselines by up to 2×.

(a) Example of a missing car in
motion.

(b) Example of a missing car in
motion. (c) Example of missing cars.

Figure 5.12: Examples of labeling errors in the Lyft dataset. The missing objects in these
examples can be within 20 meters the autonomous vehicle and several are in motion: vehicles
in motion are the most important to detect.

we focused on the scene that failed audit.

Results: recall. To assess the recall of Fixy, we exhaustively audited a 15 second scene

from our internal dataset. It contained 24 missing tracks. In this scene, Fixy achieved a

recall of 75%, finding 18 of the missing tracks in the top 10 ranked errors per-class. We

believe this result is reflective of the larger dataset.

We further manually searched for errors in the Lyft dataset and found errors in 32 of

the 46 scenes (70% of scenes). Unfortunately, due to the sheer number of errors in the Lyft

dataset, we were unable to perform recall experiments on the level of boxes. However, LOA

found errors in 100% of the scenes with errors in the top 10 ranked errors. This dataset

may be used in a different manner internally, but we were unable to find public guidelines

for dataset use.

Results: precision. Fixy outperforms on finding errors on precision in both datasets

(Table 5.7) by aggregating information across observations in tracks, which is difficult to do

with ad-hoc MAs.

We show three examples of errors Fixy found in the Lyft dataset in Figure 5.12. Many

of these errors are close to the AV and are clearly visible. These errors are problematic

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 164

because they can confuse ML models and could potentially cause downstream issues.

Discussion. To further contextualize our results, we note that Fixy uncovered an error

that was missed by an internal audit. Specifically, the motorcycle track described in Sec-

tion 5.2.6 (Figure 5.8) was not found in our initial internal audit. Given the short time period

the motorcycle was visible, it can be difficult to find for both crowd workers and auditors.

Nonetheless, it is critical to be accurately labeled for two key reasons. First, clean training

data is critical for liability purposes should an accident occur. Second, the motorcycle is

close to the autonomous vehicle, which is especially problematic for downstream planning.

Our internal model does better than the public model. This is primarily because the

Lyft dataset is very noisy: our internal model was trained on already audited data, which is

of higher quality and results in more calibrated model predictions. These results highlight

the need for high quality data: noisy data results in lower performing models.

Furthermore, the open-sourced Lyft perception dataset has a number of vehicles that

were not labeled. We plan to open source the errors we have found to aid in the development

of consistent labeling for the Lyft dataset.

Fixy can Find Missing Observations

As a case study, we searched for missing observations in human-proposed tracks. We applied

the following AOFs. We set the probability of an observation in a bundle with a human

proposal to 0. We set the probability of any track without a human proposal to 0. For

Fixy, we then ranked the bundles by likelihood. For the ad-hoc MA baseline, we random

ordered bundles.

We were only able to find a single example of such a missing observation. For this

example, Fixy ranked the missing observation at the top. We show the missing observation

in Figure 5.10 and examples of low probability missing observations in Figure 5.11. The

feature distributions correctly identify consistent predictions within tracks and correctly

downweights inconsistent predictions.

Fixy can Find Novel ML Prediction Errors

We further investigated whether or not Fixy can find errors in LIDAR model predictions.

For this use-case, we did not assume access to human-proposed labels.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 165

(a) t = 0 (b) t = 1 (c) t = 2

Figure 5.13: Example of a model error (in black) in the Lyft dataset not found by ad-hoc
model assertions. We show ground-truth boxes from human labels in orange for reference.
The erroneous prediction overlaps across frames, but is not consistent. Fixy can find such
errors as they produce unlikely values under learned feature distributions.

Experimental setup. Unlike for finding errors in human-proposed labels, ad-hoc MAs

can achieve high precision for errors in ML model predictions. As such, we deployed three ad-

hoc MAs as used in Kang et al. [101] (appear, flicker, and multibox). Briefly, the appear

assertion asserts that an observation should have observations in nearby timestamps, the

flicker assertion asserts than an observation should not appear and disappear rapidly, and

the multibox assertion asserts that 3 boxes should not overlap. These assertions can be

reproduced in Fixy with hand-tuned features.

In addition to ad-hoc MAs, we additionally compared to uncertainty sampling, in which

we sampled predictions around a confidence threshold.

We then deployed Fixy to find errors in ML model prediction after excluding the errors

found by these ad-hoc MAs. We searched for both localization and classification errors. For

Fixy, we deployed the same features as above with the exception of distance and model

only. We additionally deployed a track feature over the total number of observations. We

measure the precision of the top 10 potential errors over 5 scenes in the Lyft dataset.

Results and discussion. Across these scenes, Fixy achieves a precision at 10 of 82%

while uncertainty sampling achieved a precision of 42%. We note that errors we found with

Fixy were not found by ad-hoc MAs. Many of these errors have tracks without missing time

stamps (so will not trigger the flicker assertion) and are longer than two observations (so

will not trigger the appear assertion). We show an example of such a track in Figure 5.13,

in which the predictions overlap across frames, but in an unlikely way.

Furthermore, in contrast to uncertainty sampling, Fixy uncovers errors with high model

confidence. Fixy discovered errors in ML model predictions with confidences as high as

95%, which uncertainty sampling would miss.

CHAPTER 5. SPECIFYING ERRORS IN ML DEPLOYMENTS 166

5.2.8 Discussion

To address the problem of finding errors in labels and ML models, we propose Learned Ob-

servation Assertions (LOA) and implement Fixy. LOA allows users to specify data-driven

feature distributions to indicate which data points are potentially erroneous. Our proto-

type implementation of LOA, Fixy, leverages existing organizational resources (trained

ML models and existing labeled data) to find labeling errors. We show that Fixy can find

errors in human labels up to 2× more effectively than prior research work.

Chapter 6

Discussion

In the past few years, the computational complexity of ML methods (particularly DNNs)

has increased dramatically. For example, GPT-3, a state-of-the-art language model, takes

358 Tflops to execute. The trend towards larger models does not seem to be abating. Fur-

thermore, the scale of these models appears to be growing faster than advances in hardware.

As a parallel trend, more unstructured data is being generated than ever before, including

user-generated video, images, and text on social media, scientific video footage, etc.

Querying this data using the most accurate methods is infeasible today and will likely

become even more expensive. As a result, queries over large-scale unstructured data will

continue to be far too expensive for exhaustive execution. This is particularly the case for

resource-limited applications, including scientific applications. However, this is also the case

for applications that require human intervention, such as high-stakes labeling.

In my experience in deploying the systems I have built, several organizations have already

experienced these constraints. For example, the ecologists I have collaborated with have

limited computational resources: even executing state-of-the-art models on their dataset is

difficult. Autonomous vehicle companies collect too much data for expert annotation.

Given these trends, users of these ML methods in analytics and beyond will need prin-

cipled ways of trading off between accuracy and computational/human resources.

In this dissertation, we have introduced novel systems and techniques to navigate these

trade-offs. First, we have introduced end-to-end, proxy-based query processing methods for

ML-based queries. These methods leverage cheap approximations to expensive methods in

a principled manner. We have further introduced abstractions for finding errors in ML-

based deployments, which can find errors with high precision. These methods use existing

167

CHAPTER 6. DISCUSSION 168

resources to guide limited human resources. As our results show, navigating trade-offs

between accuracy and computational resources is possible and can give orders of magnitude

speedups with limited error.

6.1 Future Directions

Although we have shown the promise of expressing and accelerating queries over unstruc-

tured data, much work remains for the data systems community. In particular, we have

found that many scientists in the social and life sciences have workloads that can be accel-

erated using ML methods. However, in our discussions with practitioners, we have found

several repeated key requirements, which existing work today does not handle.

Usability. The most critical requirement is that solutions that require dedicated engi-

neering support are challenging for non-experts. To draw an analogy, pandas and R are the

frameworks of choice for analyzing structured data amongst this group of practitioners. In

contrast, teams of engineers can deploy higher effort, but also more scalable solutions, such

as Spark. Even setting up a Postgres database can be challenging for non-experts.

In this dissertation, we have described systems and algorithms at the level of Postgres or

Spark, in which experts can leverage state-of-the-art methods. However, much work remains

to enable non-experts to deploy such methods.

Training new models. Furthermore, in many scientific investigations, the investiga-

tors are searching for novel phenomena. The novel phenomena are either unclear to the

investigators at the beginning of the search or not in pretrained models. As a result, us-

ing off-the-shelf models is insufficient for these applications. Coupled with the difficulty in

deploying state-of-the-art ML methods, leveraging ML methods for studying these novel

phenomena becomes increasingly challenging.

Much of the effort in data systems has focused on building solutions for the best-funded

engineering efforts. However, some of the most important work for our society happens in

low-resource settings, where deploying large-scale systems is difficult. As this dissertation

shows, carefully designed techniques and abstractions can aid in both low- and high-resource

settings by directly connecting end use cases with system/algorithm design. We hope that

the data systems community continues such work to enable users in a wide range of settings.

Bibliography

[1] 2017. AF Classification from a short single lead ECG recording: the PhysioNet/Computing
in Cardiology Challenge 2017. https://physionet.org/challenge/2017/

[2] 2018. MLPerf. https://mlperf.org/.

[3] 2019. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt

[4] 2020. Scale API: The API For Training Data. https://scale.ai/

[5] Swarup Acharya, Phillip B Gibbons, and Viswanath Poosala. 1999. Aqua: A fast decision
support systems using approximate query answers. In PVLDB. 754–757.

[6] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan, Samuel
Madden, Barzan Mozafari, and Ion Stoica. 2014. Knowing when you’re wrong: building fast
and reliable approximate query processing systems. In SIGMOD. ACM, 481–492.

[7] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. 2013. BlinkDB: queries with bounded errors and bounded response times on very large
data. In EuroSys. ACM, 29–42.

[8] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual String Embeddings for
Sequence Labeling. In COLING. 1638–1649.

[9] Corrado Alessio. 2019. Animals-10. https://www.kaggle.com/alessiocorrado99/

animals10

[10] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar,
Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019. Software engineering
for machine learning: A case study. In ICSE-SEIP. IEEE, 291–300.

[11] Michael R Anderson, Michael Cafarella, Thomas F Wenisch, and German Ros. 2019. Predicate
Optimization for a Visual Analytics Database. ICDE (2019).

169

https://physionet.org/challenge/2017/
https://mlperf.org/
https://developer.nvidia.com/tensorrt
https://scale.ai/
https://www.kaggle.com/alessiocorrado99/animals10
https://www.kaggle.com/alessiocorrado99/animals10

BIBLIOGRAPHY 170

[12] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,
Reuben Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. 2019. Common voice:
A massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670 (2019).

[13] Elizabeth Arens. 2019. Always Up-to-Date Guide to Social Media Image Sizes. https:

//sproutsocial.com/insights/social-media-image-sizes-guide/

[14] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multi-
armed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[15] Favyen Bastani and Samuel Madden. 2022. OTIF: Efficient Tracker Pre-processing over Large
Video Datasets. (2022).

[16] Favyen Bastani, Oscar Moll, and Sam Madden. 2020. Vaas: video analytics at scale. Proceed-
ings of the VLDB Endowment 13, 12 (2020), 2877–2880.

[17] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque,
Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A tensorflow-based
production-scale machine learning platform. In SIGKDD. ACM.

[18] Sara Beery, Dan Morris, and Siyu Yang. 2019. Efficient Pipeline for Camera Trap Image
Review. arXiv preprint arXiv:1907.06772 (2019).

[19] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine learning
79, 1 (2010), 151–175.

[20] V. Bentkus and F. Gotze. 1996. The Berry-Esseen Bound for Student’s Statistic. The Annals
of Probability 24, 1 (1996), 491–503.

[21] Donald A Berry and Bert Fristedt. 1985. Bandit problems: sequential allocation of experiments
(Monographs on statistics and applied probability). London: Chapman and Hall 5 (1985), 71–
87.

[22] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.

[23] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word
Vectors with Subword Information. TACL 5 (2017), 135–146.

[24] Vladimir Braverman and Rafail Ostrovsky. 2013. Generalizing the layering method of indyk
and woodruff: Recursive sketches for frequency-based vectors on streams. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer, 58–
70.

https://sproutsocial.com/insights/social-media-image-sizes-guide/
https://sproutsocial.com/insights/social-media-image-sizes-guide/

BIBLIOGRAPHY 171

[25] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language
models are few-shot learners. NeurIPS 33 (2020), 1877–1901.

[26] Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, and
Ian Goodfellow. 2018. Unrestricted adversarial examples. arXiv preprint arXiv:1809.08352
(2018).

[27] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. 2009. Pure exploration in multi-armed
bandits problems. In International conference on Algorithmic learning theory. Springer, 23–
37.

[28] Michael Buckland and Fredric Gey. 1994. The relationship between recall and precision.
Journal of the American society for information science 45, 1 (1994), 12–19.

[29] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. 2019. nuScenes: A multi-
modal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019).

[30] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim, David Andersen,
Michael Kaminsky, and Subramanya Dulloor. 2019. Scaling Video Analytics on Constrained
Edge Nodes. SysML (2019).

[31] Alexandra Carpentier, Remi Munos, and András Antos. 2015. Adaptive strategy for stratified
Monte Carlo sampling. J. Mach. Learn. Res. 16 (2015), 2231–2271.

[32] Callie R Chappell and Tadashi Fukami. 2018. Nectar yeasts: a natural microcosm for ecology.
Yeast 35, 6 (2018), 417–423.

[33] Lixing Chen, Jie Xu, and Zhuo Lu. 2018. Contextual Combinatorial Multi-armed Bandits
with Volatile Arms and Submodular Reward. In NeurIPS. 3247–3256.

[34] Chiao-Lun Cheng. 2019. Training Data - Quantity is no Panacea. (2019). https://scale.

com/blog/training-data-quantity-is-no-panacea

[35] Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya
Pergament, Eyal Cidon, Sachin Katti, and Marco Pavone. 2019. Network offloading policies
for cloud robotics: a learning-based approach. arXiv preprint arXiv:1902.05703 (2019).

[36] Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettlemoyer. 2018. Ultra-fine entity typing.
ACL (2018).

[37] François Chollet et al. 2015. Keras.

https://scale.com/blog/training-data-quantity-is-no-panacea
https://scale.com/blog/training-data-quantity-is-no-panacea

BIBLIOGRAPHY 172

[38] Pramod Chunduri, Jaeho Bang, Yao Lu, and Joy Arulraj. 2021. Zeus: Efficiently localizing
actions in videos using reinforcement learning. arXiv preprint arXiv:2104.06142 (2021).

[39] Devin Coldewey. 2018. Uber in fatal crash detected pedestrian but had emergency brak-
ing disabled. https://techcrunch.com/2018/05/24/uber-in-fatal-crash-detected-

pedestrian-but-had-emergency-braking-disabled/

[40] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter
Bailis, Kunle Olukotun, Chris Re, and Matei Zaharia. 2018. Analysis of DAWNBench, a Time-
to-Accuracy Machine Learning Performance Benchmark. arXiv preprint arXiv:1806.01427
(2018).

[41] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter
Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017. DAWNBench: An End-to-End
Deep Learning Benchmark and Competition. Training 100, 101 (2017), 102.

[42] Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis,
Percy Liang, Jure Leskovec, and Matei Zaharia. 2020. Selection via Proxy: Efficient Data
Selection for Deep Learning. In ICLR.

[43] Gordon V Cormack and Thomas R Lynam. 2005. TREC 2005 Spam Track Overview.. In
TREC. 500–274.

[44] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduc-
tion to algorithms. MIT press.

[45] Graham Cormode, Antonios Deligiannakis, Minos Garofalakis, and Andrew McGregor. 2009.
Probabilistic histograms for probabilistic data. PVLDB 2, 1 (2009), 526–537.

[46] Alex Davies. 2018. How do self-driving cars see? (And how do they see me?). https:

//www.wired.com/story/the-know-it-alls-how-do-self-driving-cars-see/

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A
large-scale hierarchical image database. In CVPR. Ieee, 248–255.

[48] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[49] Mehmet Emin Dönderler, Ediz Şaykol, Umut Arslan, Özgür Ulusoy, and Uğur Güdükbay. 2005.
BilVideo: Design and implementation of a video database management system. Multimedia
Tools and Applications (2005).

https://techcrunch.com/2018/05/24/uber-in-fatal-crash-detected-pedestrian-but-had-emergency-braking-disabled/
https://techcrunch.com/2018/05/24/uber-in-fatal-crash-detected-pedestrian-but-had-emergency-braking-disabled/
https://www.wired.com/story/the-know-it-alls-how-do-self-driving-cars-see/
https://www.wired.com/story/the-know-it-alls-how-do-self-driving-cars-see/

BIBLIOGRAPHY 173

[50] Brad Dwyer. 2020. A popular self-driving car dataset is missing labels for hundreds of pedes-
trians. https://blog.roboflow.ai/self-driving-car-dataset-missing-pedestrians/.

[51] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap. CRC press.

[52] Miles Efron. 2011. Information search and retrieval in microblogs. Journal of the American
Society for Information Science and Technology 62, 6 (2011), 996–1008.

[53] EHRA. 2010. Guidelines for the management of atrial fibrillation: the Task Force for the
Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European
heart journal 31, 19 (2010), 2369–2429.

[54] Steven Eliuk, Cameron Upright, Hars Vardhan, Stephen Walsh, and Trevor Gale. 2016. dMath:
Distributed Linear Algebra for DL. arXiv preprint arXiv:1611.07819 (2016).

[55] Lawrence C Evans. 1998. Graduate studies in mathematics. In Partial differential equations.
Am. Math. Soc.

[56] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo,
Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, et al. 2018. A configurable
cloud-scale DNN processor for real-time AI. In ISCA. IEEE Press, 1–14.

[57] T Gale, S Eliuk, and C Upright. 2017. High-Performance Data Loading and Augmentation
for Deep Neural Network Training. In GPU technology conference 2017.

[58] Edward Gan, Peter Bailis, and Moses Charikar. 2020. Coopstore: Optimizing precomputed
summaries for aggregation. Proceedings of the VLDB Endowment 13, 12 (2020), 2174–2187.

[59] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2002. Querying and mining data
streams: you only get one look a tutorial. In SIGMOD. 635–635.

[60] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. 2018. De-
tectron. https://github.com/facebookresearch/detectron.

[61] Herman Heine Goldstine, John Von Neumann, and John Von Neumann. 1947. Planning and
coding of problems for an electronic computing instrument. (1947).

[62] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theo-
retical computer science 38 (1985), 293–306.

[63] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

https://blog.roboflow.ai/self-driving-car-dataset-missing-pedestrians/
https://github.com/facebookresearch/detectron

BIBLIOGRAPHY 174

[64] Michael Gordon and Manfred Kochen. 1989. Recall-precision trade-off: A derivation. Journal
of the American Society for Information Science 40, 3 (1989), 145–151.

[65] Ed Greengrass. 2000. Information retrieval: A survey. (2000).

[66] Sudipto Guha and Boulos Harb. 2005. Wavelet synopsis for data streams: minimizing non-
euclidean error. In KDD. 88–97.

[67] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of modern
neural networks. In International conference on machine learning. PMLR, 1321–1330.

[68] Peter J Haas and Joseph M Hellerstein. 1999. Ripple joins for online aggregation. ACM
SIGMOD Record 28, 2 (1999), 287–298.

[69] John Michael Hammersley and David Christopher Handscomb. 1964. General principles of
the Monte Carlo method. In Monte Carlo Methods. Springer, 50–75.

[70] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015).

[71] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind
Krishnamurthy. 2016. Mcdnn: An approximation-based execution framework for deep stream
processing under resource constraints. In MobiSys. ACM, 123–136.

[72] Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena Balazinska, Alvin
Cheung, and Luis Ceze. 2021. VSS: A storage system for video analytics. In SIGMOD. 685–
696.

[73] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn. In ICCV.
IEEE, 2980–2988.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for
image recognition. In CVPR. 770–778.

[75] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online aggregation. In Acm
Sigmod Record, Vol. 26. ACM, 171–182.

[76] Dan Hendrycks and Thomas G Dietterich. 2018. Benchmarking neural network robustness to
common corruptions and surface variations. arXiv preprint arXiv:1807.01697 (2018).

[77] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. 2017. Going deeper into action recog-
nition: A survey. Image and vision computing 60 (2017), 4–21.

BIBLIOGRAPHY 175

[78] Geoffrey Hinton and Tijmen Tieleman. 2012. Lecture 6.5 - RMSProp. Technical Report.

[79] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 (2015).

[80] James Hong, Will Crichton, Haotian Zhang, Daniel Y Fu, Jacob Ritchie, Jeremy Barenholtz,
Ben Hannel, Xinwei Yao, Michaela Murray, Geraldine Moriba, et al. 2020. Analyzing Who and
What Appears in a Decade of US Cable TV News. arXiv preprint arXiv:2008.06007 (2020).

[81] Eduard Hovy, Mitch Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel. 2006.
OntoNotes: the 90% solution. In NAACL. 57–60.

[82] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[83] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Paramvir Bahl, Matthai Philipose,
Phillip B Gibbons, and Onur Mutlu. 2018. Focus: Querying Large Video Datasets with Low
Latency and Low Cost. OSDI (2018).

[84] Clayton Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the International AAAI Conference on Web
and Social Media, Vol. 8.

[85] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. 2007. Database Cracking.. In CIDR,
Vol. 7. 68–78.

[86] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion Stoica.
2018. Chameleon: scalable adaptation of video analytics. In SIGCOMM. ACM, 253–266.

[87] Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent using predictive
variance reduction. In NIPS. 315–323.

[88] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
2020. Spanbert: Improving pre-training by representing and predicting spans. TACL 8 (2020),
64–77.

[89] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017. In-datacenter
performance analysis of a tensor processing unit. In ISCA. IEEE, 1–12.

[90] Sandeep Juneja and Perwez Shahabuddin. 2006. Rare-event simulation techniques: an intro-
duction and recent advances. Handbooks in operations research and management science 13
(2006), 291–350.

BIBLIOGRAPHY 176

[91] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. 2018. Predict-
ing the computational cost of deep learning models. In 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 3873–3882.

[92] Daniel Kang, Nikos Arechiga, Sudeep Pillai, Peter Bailis, and Matei Zaharia. 2022. Finding
Label and Model Errors in Perception Data with Learned Observation Assertions. SIGMOD
(2022).

[93] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declarative Aggre-
gation and Limit Queries for Neural Network-Based Video Analytics. PVLDB (2019).

[94] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017. NoScope:
optimizing neural network queries over video at scale. PVLDB 10, 11 (2017), 1586–1597.

[95] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia. 2020.
Approximate Selection with Guarantees using Proxies. PVLDB (2020).

[96] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei Zaharia.
2021. Accelerating Approximate Aggregation Queries with Expensive Predicates. PVLDB
(2021).

[97] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia. 2022. Task-
agnostic Indexes for Deep Learning-based Queries over. SIGMOD (2022).

[98] Daniel Kang, John Guibas, Peter Bailis, Yi Sun, Tatsunori Hashimoto, and Matei Zaharia.
2021. Proof: Accelerating Approximate Aggregation Queries with Expensive Predicates. arXiv
preprint arXiv:2107.12525 (2021).

[99] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia. 2021.
Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics. PVLDB
(2021).

[100] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia. 2021.
Jointly optimizing preprocessing and inference for DNN-based visual analytics. PVLDB
(2021).

[101] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model Assertions for
Monitoring and Improving ML Model. MLSys (2020).

[102] Andrej Kaparthy. 2018. Building the Software 2.0 Stack. (2018).

[103] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. 2017. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International Conference on
Computer Aided Verification. Springer, 97–117.

BIBLIOGRAPHY 177

[104] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Ferreira, M. Yuan, B. Low,
A. Jain, P. Ondruska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W.
Jiang, and V. Shet. 2019. Lyft Level 5 Perception Dataset 2020. https://level5.lyft.com/
dataset/.

[105] Omar Khattab, Christopher Potts, and Matei Zaharia. 2021. Relevance-guided supervision
for openqa with colbert. TACL 9 (2021), 929–944.

[106] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage search via
contextualized late interaction over bert. In SIGIR. 39–48.

[107] Leslie Kish. 1965. Survey sampling. Number 04; HN29, K5.

[108] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley.
2020. Panns: Large-scale pretrained audio neural networks for audio pattern recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020), 2880–2894.

[109] P. Kraft, Daniel Kang, D. Narayanan, S. Palkar, P. Bailis, and M. Zaharia. 2019. Willump:
A statistically-aware end-to-end optimizer for machine learning inference. MLSys (2019).

[110] Alex Krizhevsky et al. 2012. Imagenet classification with deep convolutional neural networks.
In NIPS.

[111] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. 2001. Factor graphs and the sum-
product algorithm. IEEE Transactions on information theory 47, 2 (2001), 498–519.

[112] Tony CT Kuo and Arbee LP Chen. 1996. A content-based query language for video databases.
In ICMCS. IEEE, 209–214.

[113] Tony CT Kuo and Arbee LP Chen. 2000. Content-based query processing for video databases.
IJDTA 2, 1 (2000), 1–13.

[114] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom.
2019. PointPillars: Fast encoders for object detection from point clouds. In CVPR. 12697–
12705.

[115] Thi-Lan Le, Monique Thonnat, Alain Boucher, and François Brémond. 2008. A query lan-
guage combining object features and semantic events for surveillance video retrieval. In MMM.
Springer.

[116] Timothy Lee. 2018. Tesla says Autopilot was active during fatal crash in Mountain
View. https://arstechnica.com/cars/2018/03/tesla-says-autopilot-was-active-

during-fatal-crash-in-mountain-view/.

https://level5.lyft.com/dataset/
https://level5.lyft.com/dataset/
https://arstechnica.com/cars/2018/03/tesla-says-autopilot-was-active-during-fatal-crash-in-mountain-view/
https://arstechnica.com/cars/2018/03/tesla-says-autopilot-was-active-during-fatal-crash-in-mountain-view/

BIBLIOGRAPHY 178

[117] John Z Li, M Tamer Ozsu, Duane Szafron, and Vincent Oria. 1997. MOQL: A multimedia
object query language. In MIPR. 19–28.

[118] Kaiyu Li and Guoliang Li. 2018. Approximate query processing: What is new and where to
go? Data Science and Engineering 3, 4 (2018), 379–397.

[119] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common objects in context. In
ECCV. Springer, 740–755.

[120] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector. In ECCV. Springer,
21–37.

[121] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face Attributes
in the Wild. In Proceedings of International Conference on Computer Vision (ICCV).

[122] Chenglang Lu, Mingyong Liu, and Zongda Wu. 2015. SVQL: A sql extended query language
for video databases. IJDTA (2015).

[123] Tyler Lu, Dávid Pál, and Martin Pál. 2010. Contextual multi-armed bandits. In Proceedings
of the Thirteenth international conference on Artificial Intelligence and Statistics. 485–492.

[124] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018. Accelerating
Machine Learning Inference with Probabilistic Predicates. In SIGMOD. ACM, 1493–1508.

[125] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to
Information Retrieval. Cambridge University Press, USA.

[126] Valerie N Martin, Robert N Schaeffer, and Tadashi Fukami. 2022. Potential effects of nectar
microbes on pollinator health. Philosophical Transactions of the Royal Society B 377, 1853
(2022), 20210155.

[127] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David
Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. 2019. Mlperf training
benchmark. arXiv preprint arXiv:1910.01500 (2019).

[128] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation
extraction without labeled data. In AFNLP. Association for Computational Linguistics, 1003–
1011.

[129] Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. 2008. Empirical bernstein stop-
ping. In Proceedings of the 25th international conference on Machine learning. ACM, 672–679.

BIBLIOGRAPHY 179

[130] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB 2, 1 (2009), 982–993.

[131] Ben Munson. 2018. Video will account for 82% of all internet traffic by 2022, Cisco
says. (2018). https://www.fiercevideo.com/video/video-will-account-for-82-all-

internet-traffic-by-2022-cisco-says

[132] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations using
distantly-labeled reviews and fine-grained aspects. In EMNLP-IJCNLP. 188–197.

[133] NTSB. 2019. Vehicle Automation Report, HWY18MH010. https://dms.ntsb.gov/public/

62500-62999/62978/629713.pdf

[134] NVIDIA. 2020. NVIDIA T4 Tensor Core GPU for AI Inference. https://www.nvidia.com/

en-us/data-center/tesla-t4/

[135] Harry Nyquist. 1928. Certain topics in telegraph transmission theory. Transactions of the
American Institute of Electrical Engineers 47, 2 (1928), 617–644.

[136] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019. Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing. In ICML. 4901–4911.

[137] Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist.
Assoc. 95, 449 (2000), 135–143.

[138] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger Pirk, Malte
Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford InfoLab. 2017. Weld: A
common runtime for high performance data analytics. In CIDR.

[139] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation
in pytorch. (2017).

[140] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated white-
box testing of deep learning systems. In OSDI. ACM, 1–18.

[141] William B Pennebaker and Joan L Mitchell. 1992. JPEG: Still image data compression stan-
dard. Springer Science & Business Media.

[142] Gregory Piatetsky-Shapiro and Charles Connell. 1984. Accurate estimation of the number of
tuples satisfying a condition. SIGMOD (1984).

[143] Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven Whang. 2019. Data
Validation for Machine Learning. SysML (2019).

https://www.fiercevideo.com/video/video-will-account-for-82-all-internet-traffic-by-2022-cisco-says
https://www.fiercevideo.com/video/video-will-account-for-82-all-internet-traffic-by-2022-cisco-says
https://dms.ntsb.gov/public/62500-62999/62978/629713.pdf
https://dms.ntsb.gov/public/62500-62999/62978/629713.pdf
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-t4/

BIBLIOGRAPHY 180

[144] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. 1996. Improved
histograms for selectivity estimation of range predicates. ACM Sigmod Record 25, 2 (1996),
294–305.

[145] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning diverse rankings
with multi-armed bandits. In ICML. ACM, 784–791.

[146] Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew Y
Ng. 2019. Cardiologist-level arrhythmia detection with convolutional neural networks. Nature
Medicine (2019).

[147] Alex Ratner, Stephen Bach, Paroma Varma, and Chris Ré. 2017. Weak Supervision: The New
Programming Paradigm for Machine Learning. https://dawn.cs.stanford.edu/2017/07/

16/weak-supervision/

[148] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling,
Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, et al.
2019. Mlperf inference benchmark. arXiv preprint arXiv:1911.02549 (2019).

[149] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. arXiv preprint
(2017).

[150] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn: Towards real-
time object detection with region proposal networks. In NIPS.

[151] Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao Wu, and Ce
Zhang. 2019. Continuous Integration of Machine Learning Models with ease.ml/ci: Towards
a Rigorous Yet Practical Treatment. SysML (2019).

[152] Christian P Robert. 2004. Monte carlo methods. Wiley Online Library.

[153] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015. Imagenet large scale
visual recognition challenge. International journal of computer vision 115, 3 (2015), 211–252.

[154] Priscilla A San Juan, J Nicholas Hendershot, Gretchen C Daily, and Tadashi Fukami. 2020.
Land-use change has host-specific influences on avian gut microbiomes. The ISME Journal
14, 1 (2020), 318–321.

[155] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR. 4510–4520.

https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/
https://dawn.cs.stanford.edu/2017/07/16/weak-supervision/

BIBLIOGRAPHY 181

[156] Ozan Sener and Silvio Savarese. 2017. Active learning for convolutional neural networks: A
core-set approach. arXiv preprint arXiv:1708.00489 (2017).

[157] Sefik Ilkin Serengil and Alper Ozpinar. 2020. LightFace: A Hybrid Deep Face Recognition
Framework. In 2020 Innovations in Intelligent Systems and Applications Conference (ASYU).
IEEE, 23–27. https://doi.org/10.1109/ASYU50717.2020.9259802

[158] Burr Settles. 2009. Active learning literature survey. Technical Report. University of
Wisconsin-Madison Department of Computer Sciences.

[159] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy. 2017. Fast
video classification via adaptive cascading of deep models. In CVPR. 3646–3654.

[160] Vinay Shet. 2019. Lyft Level 5 Self-Driving Perception Dataset Competition Now
Open. https://medium.com/wovenplanetlevel5/lyft-level-5-self-driving-dataset-

competition-now-open-97493e9f154a. (2019).

[161] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview of
the high efficiency video coding (HEVC) standard. IEEE Transactions on circuits and systems
for video technology 22, 12 (2012), 1649–1668.

[162] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Revisiting unrea-
sonable effectiveness of data in deep learning era. In ICCV. 843–852.

[163] Sahaana Suri, Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao Zeng, Pe-
ter Bailis, Sugato Basu, Girija Narlikar, Christopher Ré, and Abishek Sethi. 2020. Lever-
aging organizational resources to adapt models to new data modalities. arXiv preprint
arXiv:2008.09983 (2020).

[164] Mingxing Tan and Quoc V Le. 2019. Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946 (2019).

[165] Mingxing Tan, Ruoming Pang, and Quoc V Le. 2019. Efficientdet: Scalable and efficient
object detection. arXiv preprint arXiv:1911.09070 (2019).

[166] David Taubman and Michael Marcellin. 2012. JPEG2000 image compression fundamentals,
standards and practice: image compression fundamentals, standards and practice. Vol. 642.
Springer Science & Business Media.

[167] Michel Tokic and Günther Palm. 2011. Value-difference based exploration: adaptive control
between epsilon-greedy and softmax. In Annual Conference on Artificial Intelligence. Springer,
335–346.

https://doi.org/10.1109/ASYU50717.2020.9259802
https://medium.com/wovenplanetlevel5/lyft-level-5-self-driving-dataset-competition-now-open-97493e9f154a
https://medium.com/wovenplanetlevel5/lyft-level-5-self-driving-dataset-competition-now-open-97493e9f154a

BIBLIOGRAPHY 182

[168] Alan Turing. 1949. Checking a large routine. In Report on a Conference on High Speed Auto-
matic Calculating machines. Cambridge University Mathematics Lab, 67–69.

[169] Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted cascade of simple
features. In CVPR, Vol. 1. IEEE, I–I.

[170] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. 2011. The
caltech-ucsd birds-200-2011 dataset. (2011).

[171] Daisuke Wakabayashi. 2018. Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots
Roam. https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.

html.

[172] Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE transactions
on consumer electronics 38, 1 (1992), xviii–xxxiv.

[173] Ulla Wandinger. 2005. Introduction to lidar. In Lidar. Springer, 1–18.

[174] Larry Wasserman. 2013. All of statistics: a concise course in statistical inference. Springer
Science & Business Media.

[175] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. 2022. Emergent abilities of
large language models. arXiv preprint arXiv:2206.07682 (2022).

[176] Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research 10, 2 (2009).

[177] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003. Overview of
the H. 264/AVC video coding standard. IEEE Transactions on circuits and systems for video
technology 13, 7 (2003), 560–576.

[178] Hao Wu. 2019. Low Precision Inference on GPU. https://developer.download.nvidia.

com/video/gputechconf/gtc/2019/presentation/s9659-inference-at-reduced-

precision-on-gpus.pdf

[179] Weiming Xiang, Patrick Musau, Ayana A Wild, Diego Manzanas Lopez, Nathaniel Hamilton,
Xiaodong Yang, Joel Rosenfeld, and Taylor T Johnson. 2018. Verification for machine learning,
autonomy, and neural networks survey. arXiv preprint arXiv:1810.01989 (2018).

[180] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017. Aggregated
residual transformations for deep neural networks. In CVPR. 1492–1500.

https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9659-inference-at-reduced-precision-on-gpus.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9659-inference-at-reduced-precision-on-gpus.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9659-inference-at-reduced-precision-on-gpus.pdf

BIBLIOGRAPHY 183

[181] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu Lin. 2019. VStore: A Data Store for
Analytics on Large Videos. In EuroSys. ACM, 16.

[182] Yan Yan, Yuxing Mao, and Bo Li. 2018. Second: Sparsely embedded convolutional detection.
Sensors 18, 10 (2018), 3337.

[183] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl,
and Michael J Freedman. 2017. Live Video Analytics at Scale with Approximation and Delay-
Tolerance. In NSDI, Vol. 9. 1.

[184] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering (2020).

[185] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. 2016. Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters
23, 10 (2016), 1499–1503.

[186] Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep learning for sentiment analysis: A survey.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8, 4 (2018), e1253.

[187] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. 2017.
Position-aware Attention and Supervised Data Improve Slot Filling. In EMNLP 2017. 35–45.

[188] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating Structured
Queries from Natural Language using Reinforcement Learning. CoRR abs/1709.00103 (2017).

[189] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. 2019. Class-
balanced Grouping and Sampling for Point Cloud 3D Object Detection. arXiv preprint
arXiv:1908.09492 (2019).

[190] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Flow-guided feature
aggregation for video object detection. arXiv preprint arXiv:1703.10025 (2017).

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30306172

2023

	Abstract
	Acknowledgements
	Introduction
	Challenges to Unstructured Data Analytics
	The High Cost of Unstructured Data Analytics
	The Unreliability of Unstructured Data Analytics
	The Programming Difficulty of Unstructured Data Analytics

	Efficient and Reliable Unstructured Data Queries
	Efficient ML-based Queries
	Efficient and High Quality Proxy Score Generation
	Monitoring and Quality Assurance

	Organization

	Background
	Example Applications
	Traffic Analysis
	Ecological Analysis
	News Analysis

	Deploying ML for Analytics
	Related Work
	Approximate Query Processing
	Retrieval

	Proxy-based Algorithms and Systems
	NoScope
	NoScope Architecture and Techniques
	Model Specialization
	Evaluation
	Discussion

	Approximate Selection with Guarantees
	Use Cases
	Approximate Selection Queries
	Algorithm Overview
	Estimating proxy thresholds
	Evaluation
	Discussion

	Approximate Aggregation with Predicates
	Overview and Query Semantics
	Query Formalism
	Algorithm Description and Query Processing
	Theoretical Analysis
	Evaluation
	Discussion

	BlazeIt
	BlazeIt System Overview
	FrameQL: Expressing Complex Spatiotemporal Visual Queries
	Query Optimizer Overview
	Optimizing Aggregates
	Optimizing Limit Queries
	Evaluation
	Discussion

	Generating Proxy Scores Efficiently
	TASTI: Semantic Indexes for Unstructured Data
	Overview and Example
	Index Construction
	Query Processing with TASTI
	Theoretical Analysis
	Evaluation
	Discussion

	Smol: Hardware Efficient Proxy Generation
	Measurement Study of End-to-End DNN Inference
	Smol Overview
	Cost Modeling for Visual Analytics
	Input-aware Methods for Accuracy and Throughput Trade Offs
	An Optimized Runtime Engine for End-to-End Visual Inference
	Evaluation
	Discussion

	Specifying Errors in ML Deployments
	Model Assertions
	Model Assertions
	Using Model Assertions for Active Learning with BAL
	Consistency Assertions and Weak Supervision
	Evaluation
	Discussion

	Learned Observation Assertions
	Example and Background
	System Overview
	Learned Observation Assertions
	Feature Distributions
	Scoring Relative Plausibility
	Applications
	Evaluation
	Discussion

	Discussion
	Future Directions

