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Machine learning (ML) has the potential to enable analytics about the real world by querying unstructured
data (e.g., videos, text) with high accuracy ML methods, e.g., expensive deep neural networks (DNNs).
Scientists and analysts can use these capabilities to understand the real world: city planners can ask how
many cyclists passed through an intersection [2], ecologists can perform ecological analysis on hummingbird
feeding patterns [4], and firefighters can use cameras for early detection of wildfires [7].

Unfortunately, there are two key barriers to the adoption of ML at scale: cost and reliability. ML methods
can be computationally expensive, costing up to hundreds of billions of floating-point operations. This
computational cost directly translates to dollar costs that are infeasible for many organizations, e.g., analyzing
a year of video can cost over $200,000. Furthermore, ML methods can be unreliable, causing errors in queries
or other downstream applications. These barriers require rethinking standard data management techniques
when deploying ML for analytics.

To address these barriers, I study and build data management systems that facilitate the use of ML at
scale. I have focused on accelerating common ML-based queries using cheap approximations while providing
statistical guarantees on query results. My algorithms can improve query processing speeds by orders of
magnitude. Furthermore, I have applied insights from my work to accelerate traditional ML pipelines and
studied broader robustness guarantees.

In my research, I have collaborated with and deployed my research with scientific and industrial partners,
including Stanford biologists and researchers at Toyota Research Institute, an autonomous vehicle company.
By collaborating with practitioners, I have been able to understand real-world problems and find generally
applicable solutions. I have focused on carefully benchmarking and understanding end-to-end application
semantics. Given this understanding, I have designed algorithms, built systems, and constructed programming
abstractions as the problem at hand demands. I believe efficient and reliable queries have the potential for
good, including applications ranging from early wildfire detection to ecological analysis.

1 Query Processing Algorithms for ML-based Queries
Unlike in standard queries over structured data, the primary cost in querying unstructured data is extracting
the structured information via expensive, target DNNs. In many applications, it is infeasible to exhaustively
extract this information, so this extraction must be done at query time. As a result, many standard query
processing techniques cannot be applied and data management with ML must be rethought.

In one line of my dissertation research, I have focused on generating and using cheap approximations, called
proxy models, to accelerate ML-based queries. Proxy models are substantially cheaper than expensive ML
models, but can be inaccurate, which is not acceptable in many applications. To rectify this, I have developed
algorithms to accelerate general classes of queries: selection, aggregation, and limit queries with statistical
guarantees on query results. I further show how to efficiently generate these approximations.

Selection queries (classification). An important class of queries are selection queries, in which the user
wishes to select records matching a predicate, e.g., frames of a video containing a hummingbird. I explored
generating cheap approximations (which I refer to as proxy scores) in the NoScope system [10]. NoScope
trains a proxy model to approximate whether or not a data record satisfies the target DNN-based predicate.
The proxy model is used to generate a proxy score per data record, which is combined with the target DNN
to answer queries. NoScope can improve approximate selection by orders of magnitude compared to the
solution of exhaustive labeling. NoScope has inspired other research for ML-based data analytics [1, 3, 19].
Furthermore, I have shown that proxy models can accelerate general classes of traditional ML workloads [18],
e.g., data-transformation bound workloads.

Selection queries with guarantees. While NoScope and other systems [1, 3, 19] can accelerate
approximate selection queries, they does not provide statistical guarantees on the recall of the returned set.
These guarantees are critical for scientific rigor. For example, our collaborators in the Stanford biology
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department wish to find rare events of hummingbirds feeding in wildlife video. To ensure scientifically valid
inferences, they require statistical guarantees on the recall of the discovered hummingbirds. I am actively
working on deploying SUPG to this application.

To obtain statistical guarantees, I have developed SUPG, query semantics and sampling algorithms for
approximate selection queries with guarantees [11]. Our algorithms selectively sample the target DNN and
optimize confidence intervals over the samples, which provides the statistical guarantees. Prior work uses
uniform sampling, which I show results in poor quality results (i.e., returned sets with low precision). To
improve the sampling efficiency, SUPG instead use a novel set of weights for importance sampling. I show
that our algorithms can improve query quality by up to 30× for a fixed budget.

Other queries with guarantees. I have also developed algorithms to optimize aggregation (computing a
statistic over the data records), aggregation with predicate (computing a statistic over a subset of the data
records that satisfy a condition), and limit (finding a limited number of records that match a set of predicates)
queries [9, 12]. Perhaps surprisingly, we show that these different queries require different algorithms.

BlazeIt, which optimizes aggregation and limit queries, reduces variance in sampling for aggregation queries
and ranks rare events for limit queries. In contrast, ABae, which optimizes aggregation with predicate
queries, uses stratified sampling based on proxy models to avoid sampling records not satisfying the predicates.
We show that the convergence of ABae requires novel analysis of stratified sampling with stochastic draws.
Both systems can improve query execution times by orders of magnitude compared to baselines.

Efficient indexes for proxy scores. While proxy scores can accelerate many query types, they can be
inefficient to deploy. A common method of generating proxy scores is to train a new, cheap model per query
to approximate the expensive target DNN. Unfortunately, this method does not share work across queries,
requires ad-hoc training methods, and requires many target DNN annotations for training data.

To address these issues, I have developed TASTI, a general-purpose method for constructing proxy scores for
unstructured data via an embedding index [13]. TASTI pre-computes embeddings that can be used to place
records that are close under target DNN outputs together and annotates a small fraction of the records. To
generate scores, TASTI assigns close records (by embedding distance) to the value of the nearest annotated
record. Because these embeddings are pre-computed and are designed to work for any query over the target
DNN output, they can be reused across queries and query types (including every query type I described
above). I show that TASTI is simultaneously over 10× cheaper at index construction time and can return
query results up to 24× better than ad-hoc proxy models.

Efficiently executing visual analytics [15]. Recent research, e.g., new accelerators, has greatly improved
the throughput of DNNs by up to 150×. While this work has improved the throughput of DNN execution,
it ignores other costs. I show that the preprocessing of visual data (e.g., image decoding) now bottlenecks
end-to-end DNN inference for visual analytics systems by up to 23×, in the first measurement study of
its kind [15]. To address this bottleneck, I built Smol, a system that jointly optimizes preprocessing and
DNN execution for improved end-to-end DNN inference. Smol leverages low resolution visual data, partial
decoding, and preprocessing-aware cost-based optimzation to balance preprocessing and DNN execution.
These optimizations can improve throughput by up to 5.9× at a fixed accuracy.

2 Model Robustness and Quality Control
Robustness of ML is a key barrier to widespread adaption. In mission-critical systems, errors in models can
have cascading effects, e.g., safety violations in autonomous vehicles. In query processing, errors in the target
DNN will be reflected in results, as guarantees are with respect to the target DNN. I have developed methods
to monitor ML methods, improve training data quality, and methods of measuring robustness. My work on
model assertions is being deployed at an autonomous vehicle company.

Assertions for ML and retraining. As ML methods continue to improve on benchmark tasks, they are
increasingly being deployed in mission-critical settings, such as autonomous vehicles. However, average-case
measures of performance can hide potentially critical errors. While software testing has developed many tools
for testing critical software, but is not directly applicable to ML.
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My work has taken steps to bridge these two views. I’ve developed two abstractions, model assertions [16]
and learned observation assertions [8]. Both abstractions are used to find potential errors in ML model
predictions and human labels.

Model assertions allow users to specific specific forms of potential errors. For example, consider a state-of-the-
art object detection DNN deployed over video to detect cars. Even state-of-the-art can fail simple assertions,
such as temporal consistency, e.g., that a car should not appear and disappear rapidly in a video. Learned
observation assertions (LOA) leverage existing human labels to learn when there may be discrepancies in ML
model predictions or new, possibly erroneous, human labels. Model assertions and LOA can find errors with
high true positive rate, at least 75% in all cases we studied.

Furthermore, I showed that assertions can be used in retraining ML models. Organizations continuously
collect data to retrain ML models as they are deployed over new scenarios, e.g., autonomous vehicles seeing
new streets. It is critical to select data that will improve the model as the majority of data is uninteresting. I
showed that model assertions can be used to select “difficult” data (i.e., data that the model fails on), which
improves ML model quality more than baselines. Assertions can reduce labeling costs by up to 40% at a
fixed budget by finding such data.

Broader robustness guarantees. Robustness of ML models is also of broader interest. I have studied
broader robustness guarantees by understanding end-to-end application concerns. First, I have developed
a method for training natural language generation (NLG) models to be robust against noise in training
data [14]. Second, I have developed a method of measuring the robustness of models against adversaries not
seen at training time, which is more reflective of reality [17].

3 Benchmarking ML Pipelines
As ML systems have improved, it has become increasingly difficult to compare the performance of these
systems. Existing work has measured proxy metrics, such as the time to process a single minibatch of data,
but these metrics are not indicative of producing a high quality result, e.g., DNNs with high accuracy.

I was part of the founding team for DAWNBench [5, 6] and MLPerf [20], which have set standards for
comparing DNN systems and is now widely used in industry and academia. We introduced the time-to-
accuracy (TTA) metric, which measures DNN training systems by the end-to-end training time required to
achieve a state-of-the-art accuracy. Using TTA, we showed that optimizations can interact in non-trivial
ways, e.g., producing lower speedups, demonstrating that proxy metrics are not sufficient for measuring DNN
systems [5]. I also helped develop MLPerf, an industry and research consortium that uses TTA a metric to
measure DNN systems [20].

4 Applications and Future Research
While my work has shown the promise of ML-based analytics, I believe we have only begun to enable scientists
and organizations to use ML. Increasingly, the data we collect can be used in high impact ways, particularly
in analytics in rare events and high-stakes analytics.

ML-based analytics over rare events. Analytics over rare events are increasingly important and will
require new techniques. For example, I am collaborating with Stanford biologists to find rare events of
hummingbird visits: their prevalence is under 0.1%. Unfortunately, off-the-shelf models perform poorly and
it is difficult to obtain enough samples of hummingbirds to train a proxy model as the vast majority of
the video is empty. Furthermore, scientific analyses require statistical guarantees on accuracy, i.e., recall of
hummingbird visits, which off-the-shelf methods do not provide.

This applications is indicative of a larger class of analytics: analytics over rare events, which is challenging as
standard methods of data collection and training DNNs do not perform well in sample-limited regimes. I plan
to develop methods that bootstrap DNNs for end-to-end analytics over rare events. While seemingly simple,
I believe there are many research questions that will arise. For instance, how should we select which data
records to label? How should we split between iteratively training DNNs and performing inference over large
quantities of data? How can we achieve statistical guarantees when combined with iterative data exploration?
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I plan to leverage my expertise in ML-based query processing to answer these questions.

ML-based analytics for decision making. Another important class of analytics will be analytics that
inform high-stakes decisions. As an example, I am collaborating with staff at a nature preserve for early
wildfire detection via cameras. In conjunction with ALERTWildfire, Jasper Ridge nature preserve has
installed cameras to detect wildfires, as they do not have the resources to patrol in person. This application
has several features that I believe will becoming increasingly common. Similarly to the settings I have studied,
there are limited resources, but there are several key differences. First, many applications require low latency
responses as actions must be taken to mitigate potential hazards, in contrast to the batch setting where
throughput is the primary metric. Second, conditions can constantly change, e.g., because of seasonality or
changing wildfire conditions. This introduces problems of data drift, which is also not present in the batch
analytics setting. I plan to develop systems and algorithms to reason about how analytics inform decision
making, including using my expertise in monitoring models to understand when to trigger retraining and my
expertise in building high performance systems to ensure low latency in the face of resource constraints.

Other query types. While I have shown that certain ML-based queries can be accelerated, there is much
work to be done. For example, many applications would benefit from accelerated systems for joins, group bys,
and nested queries. Furthermore, more complex queries will require query optimization for efficient execution.
I plan to explore these queries by developing new algorithms and query processing techniques.

My research approach has been to understand end-to-end applications and develop widely applicable
algorithms, systems, and programming abstractions to solve the general problems that have arisen from these
applications. While my research has shown the promise of ML-based queries, I believe there will be a range
of new, impactful applications. I plan to continue to take my principled approach towards solving problems
to enable these applications.
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